Physical properties of particulate matter from animal houses—empirical studies to improve emission modelling

An Erratum to this article was published on 10 May 2016

Abstract

Maintaining and preserving the environment from pollutants are of utmost importance. Particulate matter (PM) is considered one of the main air pollutants. In addition to the harmful effects of PM in the environment, it has also a negative indoor impact on human and animal health. The specific forms of damage of particulate emission from livestock buildings depend on its physical properties. The physical properties of particulates from livestock facilities are largely unknown. Most studies assume the livestock particles to be spherical with a constant density which can result in biased estimations, leading to inaccurate results and errors in the calculation of particle mass concentration in livestock buildings. The physical properties of PM, including difference in density as a function of particle size and shape, can have a significant impact on the predictions of particles’ behaviour. The aim of this research was to characterize the physical properties of PM from different animal houses and consequently determine PM mass concentration. The mean densities of collected PM from laying hens, dairy cows and pig barns were 1450, 1520 and 2030 kg m−3, respectively, whilst the mass factors were 2.17 × 10−3, 2.18 × 10−3 and 5.36 × 10−3 μm, respectively. The highest mass concentration was observed in pig barns generally followed by laying hen barns, and the lowest concentration was in dairy cow buildings. Results are presented in such a way that they can be used in subsequent research for simulation purposes and to form the basis for a data set of PM physical properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

m F (μg):

Mass factor

ρ P (kg m−3):

Particle density

κ :

Dynamic shape factor

P r (m):

Perimeter of the particle matter

A (m2):

Area of the particle matter

η (μPa):

Viscosity

C C :

Cunningham correction factor

V s (m s−1):

Sedimentation velocity

S s (m):

Sedimentation stroke

S t (s):

Sedimentation time

T (°C):

Ambient air temperature

d (m):

Particle diameter

g (m s−2):

Gravitational constant

Π:

Transcendental number (3.1415…)

PM:

Particulate matter

PM2.5 :

Particulate matter diameter <2.5 μm

PM10 :

Particulate matter diameter < 10 μm

TSP:

Total suspended particles

References

  1. Aarnink AJA, Ellen HH (2007) Processes and factors affecting dust emissions from livestock production. International Conference How to improve air quality. Maastricht, the Netherlands

  2. Alencar M, Nääs I, Gontijo LA (2004) Respiratory risks in broiler production workers. Braz J Poultry Sci 6(1):23–29

    Google Scholar 

  3. Balonis M, Glasser FP (2009) The density of cement phases. Cem Concr Res 39:733–739

    CAS  Article  Google Scholar 

  4. Beyer LA, Clutsom FG (1978) Density and porosity of oil reservoirs and overlying formations from borehole gravity measurements, Gebo Oil Field, Hot Springs County, Wyoming. Oil and gas investigations chart OC-88, U.S. Geological survey, Reston, Virginia. ISBN: 0607823909

  5. Cambra-López M, Torres AG, Aarnink AJA, Ogink NWM (2011a) Source analysis of fine and coarse particulate matter from livestock houses. Atmos Environ 45:694–707

  6. Cambra-López M, Hermosilla T, Lai HTL, Aarnink AJA, Ogink NWM (2011b) Particulate matter emitted from poultry and pig houses: source identification and quantification. Trans ASABE 54:629–642

  7. Costa A, Guarino M, Navarotto P, Mazzotta V (2007) PM10 emission factor from swine husbandry in northern Italy: application of an accurate measuring methods. International Conference How to improve air quality. Maastricht, the Netherlands

  8. David RS, Jacobson LD, Janni KA (2002) Continuous monitoring of ammonia, hydrogen sulfide and dust emissions from swine, dairy and poultry barns. ASAE Annual International Meeting / CIGR XVth World Congress, Chicago, Illinois, USA

    Google Scholar 

  9. DFG (Deutsche Forschungsgemeinschaft) (2015) Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte Mitteilung 51, MAK- und BAT-Werte-Liste. Wiley-VCH Verlagsgesellschaft mbH, Weinheim, Deutschland

    Google Scholar 

  10. DIN-EN 13284–1 (2001) Emissionen aus stationären Quellen, Ermittlung der Staubmassenkonzentration bei geringen Staubkonzentrationen, Teil 1: Manuelles gravimetrisches Verfahren, Kommission Reinhaltung der Luft (KRdL) im VDI und DIN, Deutsches Institut für Normung e.V. 13284–1

  11. Duggal SK (2008) Building materials. 3rd edition. New Age International (P) Ltd., Publishers. ISBN (13): 978-81-224-2975-6.

  12. Eugenija Z, Mustajbegovic J, Schachter EN, Kern J, Rienzi N, Goswami S, Marom Z, Maayani S (1995) Respiratory function in poultry works and pharmacologic characterization of poultry dust extract. Environ Res 70:11–19

    Article  Google Scholar 

  13. Fischer H, Polikarpov G, Craievich A (2004) Average protein density is a molecular-weight-dependent function. Protein Sci 13:2825–2828

    CAS  Article  Google Scholar 

  14. Golbabaei F, Islami F (2000) Evaluation of workers’ exposure to dust, ammonia and endotoxin in poultry industries at the province of Isfahan, Iran. Ind Health 38:41–46

    CAS  Article  Google Scholar 

  15. Haeussermann A, Hartung E, Costa A, Guarino M, Vranken E, Berckmans D (2007) Estimate particulate emissions by intermittent measurements: a feasibility study. International Conference How to improve air quality. Maastricht, the Netherlands.

  16. Hartung J, Saleh M (2007) Composition of dust and effects on animals. International interdisciplinary conference. Particulate matter in and from agriculture, Braunschweig, Germany

    Google Scholar 

  17. Henseler-Passmann J (2010) Untersuchungen zur Emission und Transmission von Feinstäuben aus Rinderställen. Dissertation. Bonn University, Germany. VDI-MEG-Schrift 490.

  18. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles, Wiley, ISBN 0-471-19410-7

  19. Horvarth H (1978) Method for the determination of dynamic shape factors of sphere aggregates by measuring the sedimentation velocity in a capacitor. J Aerosol Sci 10:309–315

    Article  Google Scholar 

  20. Iversen M, Kirychuk S, Drost H, Jacobson L (2000) Human health effects of dust exposure in animal confinement buildings. J Agric Saf Health 6(4):283–288

    CAS  Article  Google Scholar 

  21. Kappos A, Bruckmann P, Eikmann T, Englert N, Heinrich U, Höppe P, Koch E, Metz N, Rauchfuss K, Rombout P, Schabronath J, Schulz-Klemp V, Spallek MF, Wichmann HE, Kreyling WG, Krause GHM (2003) Current literature of air pollution assessing effects on human health. Working-group: “Effects of particulate matter on human health”. Agency: Air Pollution Prevention (VDI and DIN). Umweltmed Forsch Prax 8:257–278

    Google Scholar 

  22. Kocaman B, Esenbuga N, Yildiz A, Laçin E, Macit M (2006) Effect of environmental conditions in poultry houses on the performance of laying hens. Int J Poult Sci 5(1):26–30

    Article  Google Scholar 

  23. Kock JW (2006) Physical and mechanical properties of chicken feather materials, MS thesis, School of Civil and Environmental Engineering, Georgia Institute of Technology

  24. Lai HTL, Aarnink AJA, Cambra-López M, Huynh TTT, Parmentier HK, Groot-Koerkamp PWG (2014) Size distribution of airborne particles in animal houses. CIGR Journal. Vol. 16, No.3

  25. Marlier D, Nicks B, Canart B (1993) Résultats des measures de la concentration en poussières dans l’air de 12 porcheries. Ann Med Vet 137:111–115

    Google Scholar 

  26. Merchant JA, Naleway AL, Svendsen ER, Kelly KM, Burmeister LF, Stromquist AM, Taylor CD, Thorne PS, Reynolds SJ, Sanderson WT, Chrischilles EA (2005) Asthma and farm exposures in a cohort of rural Iowa children. Environ Health Perspect 113(3):350–356

    Article  Google Scholar 

  27. Mohapatra K, Biswal SK (2014) Effect of particulate matter (PM) on plants, climate, ecosystem and human health. Int J Adv Technol Eng Sci 2(4):2348–7550

    Google Scholar 

  28. Mostafa E, Buescher W (2011) Indoor air quality improvement from particle matters for laying hen poultry houses. Biosyst Eng 109:22–36

    Article  Google Scholar 

  29. Mueller CF, (1999) Arbeitskreis Handbuch der Klimatechnik. Band 1: Grundlagen. Arbeitskreis der Dozenten für Klimatechnik, ISBN 3-7880-7335-7

  30. Nannen C (2007) Staubemissionen aus Schweineställen - Bestimmung von Einflussfaktoren auf die Partikelfreisetzung und deren Zusammensetzung. Dissertation. Bonn University, Germany. VDI-MEG-Schrift 461

  31. Nannen C, Schmitt-Pauksztat G, Büscher W (2005) Microscopic test of dust particles in pig fattening houses. Landtechnik 4:60–61

    Google Scholar 

  32. Pedersen S (1992) Dust and gases. 2nd Report of Working Group Climatization of Animal Houses, CIGR, Faculty of Agricultural Sciences, State University of Ghent, Belgien, 111–147.

  33. Pedersen S, Nonnenmann M, Rautiainen R, Demmers TGM, Banhazi T, Lyngbye M (2000) Dust in pig buildings. J Agric Saf Health 6(4):261–274

    CAS  Article  Google Scholar 

  34. Puma MC, Maghirang RG, Hosni MH, Hagen L (1999) Modeling of dust concentration distribution in a simulated swine room under non-isothermal conditions. Trans ASAE 42(6):1823–1832

    Article  Google Scholar 

  35. Radon K, Weber C, Iversen M, Danuser B, Pedersen S, Nowak D (2001) Exposure assessment and lung function in pig and poultry farmers. Occup Environ Med 58:405–410

    CAS  Article  Google Scholar 

  36. Redwine JS, Lacey RE, Mukhtar S, Carey JB (2002) Concentration and emissions of ammonia and particulate matter in tunnel-ventilated broiler houses under summer conditions in Texas. Trans ASAE 45(4):1101–1109

    CAS  Article  Google Scholar 

  37. Reiners JJ, Slaga TJ (1983) Effects of tumor promoters on the rate and commitment to terminal differentiation of subpopulations of murine keratinocytes. Cell 32(1):247–255

    CAS  Article  Google Scholar 

  38. Riedler J, Eder W, Oberfeld G, Schreuer M (2000) Austrian children living on a farm have less hay fever, asthma and allergic sensitization. J Clin Exp Allergy 30(2):194–200

    CAS  Article  Google Scholar 

  39. Rosenthal E, Schneider T, Buescher W, Diekmann B (2007) Sedimentation of animal-specific dust particles in livestock houses. Landtechnik 2(62):102–103

    Google Scholar 

  40. Scheuermann H (2004) Persönliche Schutzmaßnahmen. In: Luftgetragene biologische Belastungen und Infektionen am Arbeitsplatz Stall. KTBL-Schrift 436, S. 194–199.

  41. Seedorf J (2004) An emission inventory of livestock-related bioaerosols for Lower Saxony, Germany. Atmos Environ 38:6565–6581

    CAS  Article  Google Scholar 

  42. Seedorf J, Hartung J (2000) Emission of airborne particulates from animal production. Workshop 4 on sustainable animal production. Hannover, Germany

  43. Seedorf J, Hartung J (2002) Stäube und Mikroorganismen in der Tierhaltung, KTBL-Schrift 393, ISBN 3 7843-2145-3.

  44. Takai H, Pedersen S, Johnsen JO, Metz JHM, Koerkamp PWGG, Uenk GH, Phillips VR, Holden MR, Sneath RW, Short JL, White RP, Hartung J, Seedorf J, Schroder M, Linkert KH, Wathes CM (1998) Concentrations and emissions of airborne dust in livestock buildings in Northern Europe. J Agric Eng Res 70(1):59–77

    Article  Google Scholar 

  45. Takai H, Nekomoto K, Dahl P, Okamoto E, Morita S, Hoshiba S (2002) Ammonia contents and desorption from dusts collected in livestock buildings. Agricultural Engineering International: the CIGR Journal of Scientific Research and Development. Manuscript BC 01 005. Vol. IV

  46. Van Wicklen GL, Yoder MF (1988) Respirable particle concentrations in naturally-ventilated broiler housing. Trans ASABE 31(6):1794–1797

    Article  Google Scholar 

  47. VDI (2002) Verein Deutscher Ingenieure Wärmeatlas, Springer-Verlag, ISBN 3-540-41200-X

  48. Winkel A, Mosquera J, van Riel JW, Groot Koerkamp PWG, Ogink NWM, Aarnink AJA (2015) Emissions of particulate matter from animal houses in the Netherlands. Atmos Environ 111:202–212

    CAS  Article  Google Scholar 

  49. Yang X (2010) Physical, chemical and biological properties of airborne particles emitted from animal confinement buildings. Ph.D. dissertation, Agricultural and Biological Engineering department, University of Illinois at Urbana-Champaign, USA.

  50. Yuan J, Flores RA (1996) Laboratory dry-milling performance of white corn: effect of physical and chemical corn characteristics. Cereal Chem 73(5):574–578

    CAS  Google Scholar 

  51. Zhang Y, Ghaly AE, Li B (2012) Physical properties of wheat straw varieties cultivated under different climatic and soil conditions in three continents. Am J Eng Appl Sci 5(2):98–106

    Article  Google Scholar 

  52. Zhu Z, Dong H, Tao X, Xin H (2005) Evaluation of airborne dust concentration and effectiveness of cooling fan with spraying misting systems in swine gestation houses. Proceedings of the seventh international symposium, Beijing, China - ASAE Publication Number 701P0205, ed. T. Brown-Brandl. 224–229

Download references

Acknowledgments

The authors would like to show their appreciation for the financing organizations, Deutsche Forschungsgemeinschaft (DFG), Zentralverband der Deutschen Geflügelwirtschaft (ZDG) and Umweltverträgliche und Standortgerechte Landwirtschaft (USL). We also thank the animal housing owners for giving us the opportunity for achieving this study in their farms.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ehab Mostafa.

Additional information

Responsible editor: Marcus Schulz

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mostafa, E., Nannen, C., Henseler, J. et al. Physical properties of particulate matter from animal houses—empirical studies to improve emission modelling. Environ Sci Pollut Res 23, 12253–12263 (2016). https://doi.org/10.1007/s11356-016-6424-8

Download citation

Keywords

  • Particulate matter
  • Particle density
  • Shape factor
  • Mass factor
  • Mass concentration
  • Livestock buildings