Skip to main content
Log in

Construction of the Syngonium podophyllum-Pseudomonas sp. XNN8 Symbiotic Purification System and Investigation of Its Capability of Remediating Uranium Wastewater

  • Water Reclamation and Reuse
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The endophyte Pseudomonas sp. XNN8 was separated from Typha orientalis which can secrete indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase and siderophores and has strong resistance to uranium it was then colonized in the Syngonium podophyllum; and the S. podophyllum-Pseudomonas sp. XNN8 symbiotic purification system (SPPSPS) for uranium-containing wastewater was constructed. Afterwards, the hydroponic experiments to remove uranium from uranium-containing wastewater by the SPPSPS were conducted. After 24 days of treatment, the uranium concentrations of the wastewater samples with uranium concentrations between 0.5 and 5.0 mg/L were lowered to below 0.05 mg/L. Furthermore, the uranium in the plants was assayed using Fourier transform infrared spectroscopy (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The Pseudomonas sp. XNN8 was found to generate substantial organic groups in the roots of the Syngonium podophyllum, which could improve the complexing capability of S. podophyllum for uranium. The uranium in the roots of S. podophyllum was found to be the uranyl phosphate (47.4 %) and uranyl acetate (52.6 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Braud A, Hannauer M, Mislin GL, Schalk IJ (2009) The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191(11):3517–3525

    Article  CAS  Google Scholar 

  • Carvalho FP, Oliveira JM, Malta M (2011) Radionuclides in plants growing on sludge and water from uranium mine water treatment. Ecol Eng 37(7):1058–1063

    Article  Google Scholar 

  • Chabalala S, Chirwa EMN (2010) Removal of uranium (VI) under aerobic and anaerobic conditions using an indigenous mine consortium. Miner Eng 23(6):526–531

    Article  CAS  Google Scholar 

  • Chen J, Henny RJ, Devanand PS, Chao CT (2006) Aflp analysis of nephthytis (Syngonium podophyllum Schott) selected from somaclonal variants. Plant Cell Rep 24(12):743–749

    Article  CAS  Google Scholar 

  • Croat TB (1981) A revision of syngonium (Araceae). Ann Mo Bot Gard 68(4):565–651

    Article  Google Scholar 

  • Deng QW, Ding DX, Liu D (2014) Adsorption of U (VI) by deinococcus radiodurans in water. Met Miner 43(1):150–153 (in Chinese)

    Google Scholar 

  • Ding DX, Tan X, Hu N, Li GY, Wang YD, Tan Y (2012) Removal and recovery of uranium (VI) from aqueous solutions by immobilized Aspergillus niger powder beads. Bioprocess Biosyst Eng 35(9):1567–1576

    Article  Google Scholar 

  • Fathi RA, Godbold DL, Al-Salih HS, Jones D (2014) Potential of phytoremediation to clean up uranium-contaminated soil with Acacia species. J Environ Earth Sci 4(4):81–91

    Google Scholar 

  • Favas PJ, Pratas J, Varun M, D’Souza R, Paul MS (2014) Accumulation of uranium by aquatic plants in field conditions: prospects for phytoremediation. Sci Total Environ 470:993–1002

    Article  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750

    Article  Google Scholar 

  • Glick BR (2015) Principles of plant-microbe interactions. In: Lugtenberg B (ed) Stress control and ACC deaminase, 1st edn. Springer, New York, pp 257–264

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914

    Article  CAS  Google Scholar 

  • He JD, Wang YD, Hu N, Ding DX, Sun J, Deng QW et al (2015) An artificially constructed syngonium podophyllum-aspergillus niger combinate system for removal of uranium from wastewater. Environ Sci Pollut Res 22:1–9

    Article  Google Scholar 

  • Hu N, Ding DX, Li GY, Wang YD, Li L, Zheng JF (2012) Uranium removal from water by five aquatic plants. Acta Sci Circumst 32:1637–1645 (in Chinese)

    CAS  Google Scholar 

  • Kazy SK, D’Souza SF, Sar P (2009) Uranium and thorium sequestration by a Pseudomonas sp.: mechanism and chemical characterization. J Hazard Mater 163(1):65–72

    Article  CAS  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90(4):1317–1332

    Article  CAS  Google Scholar 

  • Laurette J, Larue C, Llorens I, Jaillard D, Jouneau PH, Bourguignon J, Carrière M (2012) Speciation of uranium in plants upon root accumulation and root-to-shoot translocation: a XAS and TEM study. Environ Exp Bot 77:87–95

    Article  CAS  Google Scholar 

  • Lloyd NS, Chenery SRN, Parrish RR (2009) The distribution of depleted uranium contamination in Colonie, NY, USA. Sci Total Environ 408(2):397–407

    Article  CAS  Google Scholar 

  • Lozano JC, Rodríguez PB, Tomé FV, Calvo CP (2011) Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments. J Hazard Mater 198:224–231

    Article  CAS  Google Scholar 

  • Lu X, Zhou XJ, Wang TS (2013) Mechanism of uranium (VI) uptake by Saccharomyces cerevisiae under environmentally relevant conditions: Batch, HRTEM, and FTIR studies. J Hazard Mater 262:297–303

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 195:230–237

    Article  CAS  Google Scholar 

  • Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, Lelie DVD (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23(1):175–188

    Article  CAS  Google Scholar 

  • Pang C, Liu YH, Cao XH, Li M, Huang GL, Hua R, An XF (2011) Biosorption of uranium (VI) from aqueous solution by dead fungal biomass of Penicillium citrinum. Chem Eng J 170(1):1–6

    Article  CAS  Google Scholar 

  • Schöner A, Noubactep C, Büchel G, Sauter M (2009) Geochemistry of natural wetlands in former uranium milling sites (eastern Germany) and implications for uranium retention. Chem Erde-Geochem 69:91–107

    Article  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  Google Scholar 

  • Shin SH, Lim Y, Lee SE, Yang NW, Rhee JH (2001) CAS agar diffusion assay for the measurement of siderophores in biological fluids. J Microbiol Methods 44(1):89–95

    Article  CAS  Google Scholar 

  • Soudek P, Petřík P, Vágner M, Tykva R, Plojhar V, Petrová Š, Vaněk T (2007) Botanical survey and screening of plant species which accumulate 226 Ra from contaminated soil of uranium waste depot. Eur J Soil Biol 43(4):251–261

    Article  CAS  Google Scholar 

  • Soudek P, Petrová Š, Benešová D, Dvořáková M, Vaněk T (2011) Uranium uptake by hydroponically cultivated crop plants. J Environ Radioact 102(6):598–604

    Article  CAS  Google Scholar 

  • Stanbrough R, Chuaboonmee S, Palombo EA, Malherbe F, Bhave M (2013) Heavy metal phytoremediation potential of a heavy metal resistant soil bacterial isolate, Achromobacter sp. strain AO22. Apcbee Procedia 5:502–507

    Article  CAS  Google Scholar 

  • Wang Y, Frutschi M, Suvorova E, Phrommavanh V, Descostes M, Osman AA, Bernier-Latmani R (2013) Mobile uranium (IV)-bearing colloids in a mining-impacted wetland. Nat Commun 4(1):2942

    Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20(2):248–254

    Article  CAS  Google Scholar 

  • Yang W, Bai ZQ, Shi WQ, Yuan LY, Tian T, Chai ZF, Sun ZM (2013) MOF-76: from a luminescent probe to highly efficient U VI sorption material. Chem Commun 49(88):10415–10417

    Article  CAS  Google Scholar 

  • Zhu X, Ni X, Liu J, Gao Y (2014) Application of endophytic bacteria to reduce persistent organic pollutants contamination in plants. Clean: Soil, Air, Water 42(3):306–310

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Defense Industrial Technology Development Program (B3720132001), National Natural Science Foundation of China (Grant No. U1401231, 11305087, and 11505093), Science and Technology Department of Hunan China Industrial Support projects (Grant No. 2014GK3120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-xin Ding.

Additional information

Responsible editor: Robert Duran

Qin-wen Deng and Yong-dong Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Qw., Wang, Yd., Ding, Dx. et al. Construction of the Syngonium podophyllum-Pseudomonas sp. XNN8 Symbiotic Purification System and Investigation of Its Capability of Remediating Uranium Wastewater. Environ Sci Pollut Res 24, 5134–5143 (2017). https://doi.org/10.1007/s11356-016-6392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6392-z

Keywords

Navigation