Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 11, pp 10504–10513 | Cite as

Metallothionein modulation in relation to cadmium bioaccumulation and age-dependent sensitivity of Chironomus riparius larvae

  • Zuzana Toušová
  • Jan Kuta
  • David Hynek
  • Vojtěch Adam
  • René Kizek
  • Luděk Bláha
  • Klára HilscherováEmail author
Recent sediments: environmental chemistry, ecotoxicology and engineering

Abstract

The goal of this study was to contribute to understanding of the mechanisms behind sensitivity differences between early and late instar larvae of Chironomus riparius and to address the influence of the differences in standard testing approaches on the toxicity evaluation. A 10-day contact sediment toxicity test was carried out to assess sensitivity to cadmium exposure in relation to different age and laboratory culture line origin of test organisms. Chironomid larvae of early (OECD 218 method) and late instar (US-EPA600/R-99/064 method) differed substantially in sensitivity of traditional endpoints (OECD: LOEC 50 and 10 μg Cd/g dry weight (dw); US-EPA: LOEC > 1000 and 100 μg Cd/g dw for survival and growth, respectively). Bioaccumulated cadmium and metallothioneins (MTs) concentrations were analyzed to investigate the role of MTs in reduced sensitivity to cadmium in late instar larvae. Metallothioneins were induced after treatment to greater Cd concentrations, but their levels in relation to cadmium body burdens did not fully explain low sensitivity of late instars to cadmium, which indicates some other effective way of detoxification in late instars. This study brings new information related to the role of MTs in age-dependent toxicant sensitivity and discusses the implications of divergence in data generated by chironomid sediment toxicity tests by standardized methods using different instars.

Keywords

Chironomus Artificial sediment Cadmium Bioaccumulation Metallothionein 

Notes

Acknowledgments

This project was supported by the National Sustainability Programme of the Czech Ministry of Education, Youth and Sports (LO1214) and the RECETOX research infrastructure (LM2011028).

References

  1. Abd-El-Monem HM, Corradi MG, Gorbi G (1998) Toxicity of copper and zinc to two strains of Scenedesmus acutus having different sensitivity to chromium. Environ Exp Bot 40:59–66. doi: 10.1016/S0098-8472(98)00021-5 CrossRefGoogle Scholar
  2. Adam V, Baloun J, Fabrik I et al (2008) An electrochemical detection of metallothioneins at the zeptomole level in nanolitre volumes. Sensors 8:2293–2305. doi: 10.3390/s8042293 CrossRefGoogle Scholar
  3. Adam V, Fabrik I, Eckschlager T et al (2010) Vertebrate metallothioneins as target molecules for analytical techniques. Trac-Trends Anal Chem 29:409–418. doi: 10.1016/j.trac.2010.02.004 CrossRefGoogle Scholar
  4. Amiard JC, Amiard-Triquet C, Barka S et al (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202. doi: 10.1016/j.aquatox.2005.08.015 CrossRefGoogle Scholar
  5. Brix KV, DeForest DK, Adams WJ (2011) The sensitivity of aquatic insects to divalent metals: a comparative analysis of laboratory and field data. Sci Total Environ 409:4187–4197. doi: 10.1016/j.scitotenv.2011.06.061 CrossRefGoogle Scholar
  6. Burton GA (2002) Sediment quality criteria in use around the world. Limnology 3:65–75CrossRefGoogle Scholar
  7. Cotman M, Drolc A, Ros M, Tisler T (2007) Daphnia magna wastewater toxicity assays: an interlaboratory study. Int J Environ Pollut 31Google Scholar
  8. Dallinger R (1995) Metabolism and toxicity of metals: metallothioneins and metal elimination. In: Cajaraville MP (ed) Cell Biol. Environ. Toxicol. University of the Basque Country Press service, Bilbao, pp 171–190Google Scholar
  9. de Haas EM, Paumen ML, Koelmans AA, Kraak MHS (2004) Combined effects of copper and food on the midge Chironomus riparius in whole-sediment bioassays. Environ Pollut 127:99–107. doi: 10.1016/s0269-7491(03)00252-5 CrossRefGoogle Scholar
  10. Desrosiers M, Gagnon C, Masson S et al (2008) Relationships among total recoverable and reactive metals and metalloid in St. Lawrence River sediment: bioaccumulation by chironomids and implications for ecological risk assessment. Sci Total Environ 389:101–114. doi: 10.1016/j.scitotenv.2007.08.019 CrossRefGoogle Scholar
  11. Eaton JG, Gentile JH, Stephan CE, Hansen DJ (2001) Update of ambient water quality criteria for cadmium. Office of Water, Office of Science and Technology, Washington DCGoogle Scholar
  12. Fabrik I, Ruferova Z, Hilscherova K et al (2008) A determination of metallothionein in larvae of freshwater midges (Chironomus riparius) using Brdicka reaction. Sensors 8:4081–4094. doi: 10.3390/s8074081 CrossRefGoogle Scholar
  13. Gillis PL, Diener LC, Reynoldson TB, Dixon DG (2002) Cadmium-induced production of a metallothioneinlike protein in Tubifex tubifex (Oligochaeta) and Chironomus riparius (Diptera): correlation with reproduction and growth. Environ Toxicol Chem 21:1836–1844CrossRefGoogle Scholar
  14. Gillis PL, Reynoldson TB, Dixon DG (2006) Metallothionein-like protein and tissue metal concentrations in invertebrates (Oligochaetes and Chironomids) collected from reference and metal contaminated field sediments. J Great Lakes Res 32:565–577CrossRefGoogle Scholar
  15. Haap T, Kohler HR (2009) Cadmium tolerance in seven Daphnia magna clones is associated with reduced hsp70 baseline levels and induction. Aquat Toxicol 94:131–137. doi: 10.1016/j.aquatox.2009.06.006 CrossRefGoogle Scholar
  16. Harrahy EA, Clements WH (1997) Toxicity and bioaccumulation of a mixture of heavy metals in Chironomus tentans (Diptera: Chironomidae) in synthetic sediment. Environ Toxicol Chem 16:317–327CrossRefGoogle Scholar
  17. Hilscherova K, Dusek L, Sidlova T et al (2010) Seasonally and regionally determined indication potential of bioassays in contaminated river sediments. Environ Toxicol Chem 29:522–534. doi: 10.1002/etc.83 CrossRefGoogle Scholar
  18. Hodl E, Felder E, Chabicovsky M, Dallinger R (2010) Cadmium stress stimulates tissue turnover in Helix pomatia: increasing cell proliferation from metal tolerance to exhaustion in molluscan midgut gland. Cell Tissue Res 341:159–171. doi: 10.1007/s00441-010-0980-x CrossRefGoogle Scholar
  19. Kafel A, Zawisza-Raszka A, Szulinska E (2012) Effects of multigenerational cadmium exposure of insects (Spodoptera exigua larvae) on anti-oxidant response in haemolymph and developmental parameters. Environ Pollut 162:8–14. doi: 10.1016/j.envpol.2011.09.034 CrossRefGoogle Scholar
  20. Kleckerova A, Sobrova P, Krystofova O et al (2011) Cadmium(II) and zinc(II) ions effects on maize plants revealed by spectroscopy and electrochemistry. Int J Electrochem Sci 6:6011–6031Google Scholar
  21. Krizkova S, Blahova P, Nakielna J et al (2009) Comparison of metallothionein detection by using Brdicka reaction and enzyme-linked immunosorbent assay employing chicken yolk antibodies. Electroanalysis 21:2575–2583. doi: 10.1002/elan.200900243 CrossRefGoogle Scholar
  22. Long Y, Li Q, Zhong S et al (2011) Molecular characterization and functions of zebrafish ABCC2 in cellular efflux of heavy metals. Comp Biochem Physiol - C Toxicol Pharmacol 153:381–391. doi: 10.1016/j.cbpc.2011.01.002 CrossRefGoogle Scholar
  23. Mieiro CL, Bervoets L, Joosen S et al (2011) Metallothioneins failed to reflect mercury external levels of exposure and bioaccumulation in marine fish—considerations on tissue and species specific responses. Chemosphere 85:114–121. doi: 10.1016/j.chemosphere.2011.05.034 CrossRefGoogle Scholar
  24. Milani D, Reynoldson TB, Borgmann U, Kolasa J (2003) The relative sensitivity of four benthic invertebrates to metals in spiked-sediment exposures and application to contaminated field sediment. Environ Toxicol Chem 22:845–854CrossRefGoogle Scholar
  25. Ng TYT, Rainbow PS, Amiard-Triquet C et al (2007) Metallothionein turnover, cytosolic distribution and the uptake of Cd by the green mussel Perna viridis. Aquat Toxicol 84:153–161Google Scholar
  26. Norberg-King TJ, Sibley PK, Burton GA et al (2006) Interlaboratory evaluation of Hyalella azteca and Chironomus tentans short-term and long-term sediment toxicity tests. Environ Toxicol Chem 25:2662–2674CrossRefGoogle Scholar
  27. Nowak C, Vogt C, Diogo JB, Schwenk K (2007) Genetic impoverishment in laboratory cultures of the test organism Chironomus riparius. Environ Toxicol Chem 26:1018–1022CrossRefGoogle Scholar
  28. Oda S, Tatarazako N, Dorgerloh M et al (2007) Strain difference in sensitivity to 3,4-dichloroaniline and insect growth regulator, fenoxycarb, in Daphnia magna. Ecotoxicol Environ Saf 67:399–405. doi: 10.1016/j.ecoenv.2006.12.010 CrossRefGoogle Scholar
  29. OECD (2004) OECD Guideline 218: sediment-water chironomid toxicity using spiked sediment. 1–21. doi:  10.1787/9789264070264-en
  30. Oskarsson A, Widell A, Olsson IM, Grawe KP (2004) Cadmium in food chain and health effects in sensitive population groups. Biometals 17:531–534CrossRefGoogle Scholar
  31. Péry ARR, Sulmon V, Mons R et al (2003) A model to understand the confounding effects of natural. Environ Toxicol Chem 22:2476–2481CrossRefGoogle Scholar
  32. Pery ARR, Ducrot V, Geffard A, Garric J (2007) Do differences between metal body residues reflect the differences between effects for Chironomus riparius exposed to different sediments? Chemosphere 66:397–403. doi: 10.1016/j.chemosphere.2006.06.040 CrossRefGoogle Scholar
  33. Ristola T, Pellinen J, Ruokolainen M et al (1999) Effect of sediment type, feeding level, and larval density on growth and development of a midge (Chironomus riparius). Environ Toxicol Chem 18:756–764CrossRefGoogle Scholar
  34. Ryvolova M, Krizkova S, Adam V et al (2011) Analytical methods for metallothionein detection. Curr Anal Chem 7:243–261CrossRefGoogle Scholar
  35. Smolders E, Schoeters I, Waegeneers N et al (2007) European Union risk assessment report: cadmium oxide and cadmium metal part 1 environment, institute. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  36. Toumi H, Boumaiza M, Millet M et al (2013) Effects of deltamethrin (pyrethroid insecticide) on growth, reproduction, embryonic development and sex differentiation in two strains of Daphnia magna (Crustacea, Cladocera). Sci Total Environ 458–460:47–53. doi: 10.1016/j.scitotenv.2013.03.085 CrossRefGoogle Scholar
  37. Toumi H, Boumaiza M, Millet M et al (2015) Investigation of differences in sensitivity between 3 strains of Daphnia magna (crustacean Cladocera) exposed to malathion (organophosphorous pesticide). J Environ Sci Heal Part B 50:34–44. doi: 10.1080/03601234.2015.965617 CrossRefGoogle Scholar
  38. US-EPA (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. 192Google Scholar
  39. Varó I, Serrano R, Navarro JC et al (1998) Acute lethal toxicity of the organophosphorus pesticide chlorpyrifos to different species and strains of Artemia. Bull Env Contam Toxicol 61:778. doi: 10.1007/s001289900828 CrossRefGoogle Scholar
  40. Wallace WG, Lee BG, Luoma SN (2003) Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Mar Ecol Ser 249:183–197. doi: 10.3354/meps249183 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zuzana Toušová
    • 1
  • Jan Kuta
    • 1
  • David Hynek
    • 2
  • Vojtěch Adam
    • 2
  • René Kizek
    • 2
  • Luděk Bláha
    • 1
  • Klára Hilscherová
    • 1
    Email author
  1. 1.Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Chemistry and Biochemistry, Faculty of AgronomyMendel University in BrnoBrnoCzech Republic

Personalised recommendations