Skip to main content
Log in

Geochemistry of the Adige River water from the Eastern Alps to the Adriatic Sea (Italy): evidences for distinct hydrological components and water-rock interactions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Adige River flows from the Eastern Alps to the Adriatic Sea and the understanding of its fluvial dynamics can be improved by geochemical and O-H isotopic investigation. The most negative isotopic compositions are recorded close to the source (δ18O between −14.1 and −13.8 ‰, δD between −100.3 and −97.0 ‰), and δD and δ18O values generally increase downstream through the upper part (UP, the mountainous sector), stabilizing along the lower part (LP, the alluvial plain) of the river with δ18O between −12.4 and −11.8 ‰, δD between −86.9 and −83.7 ‰. The isotopic variations along the stream path (δ18O-δD vs distance from the source) depict subparallel distributions for all the investigated periods, with less negative values recorded in winter. Total dissolved solids (TDS) concentration shows the lowest value (<100 mg/l) at the river source, jumping to 310 mg/l at the Rio Ram inflow, then decreasing down to the Isarco River confluence; from here, we observed an increase toward the river mouth, with different values in the distinct sampling periods. The lowest values (140–170 mg/l) were recorded during high discharge in spring, whereas higher TDS values (up to 250 mg/l) were recorded during winter low flow conditions. Extreme TDS values were observed in the estuarine samples (up to 450 mg/l), as result of mixing with seawater. The results allow for the identification of distinct water end-members: glacio-nival component(s) characterized by the most negative isotopic composition and extremely low TDS, a rainfall component characterized by intermediate isotopic and elemental composition and groundwater characterized by the less negative isotopic composition and comparatively higher TDS. An additional component is represented by seawater, which is recorded at the lowest reach of the river during drought periods. These contributions variously mix along the stream path in the distinct hydrological periods, and the presented data are a snapshot of the current hydroclimatic conditions. Future investigations will evaluate possible hydrological variations related to meteo-climatic changes. Monitoring is fundamental for future water management to overcome the vanishing of a significant water end-member of the basin, i.e., the glacio-nival reservoir that is severely affected by the ongoing climatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Autorità di bacino del fiume Adige (2008) Quaderno sul bilancio idrico superficiale di primo livello - Bacino idrografico del Fiume Adige., URL., http://www.bacino-adige.it

  • Buss S, Cai Z, Cardenas B et al (2009) The hyporheic handbook—a handbook on the groundwater–surface water interface and hyporheic zone for environment managers. Integrated catchment science programme, Science report: SC050070. Environment Agency, Bristol, UK

    Google Scholar 

  • Campodonico VA, Garcia MG, Pasquini AI (2015) The dissolved chemical and isotopic signature downflow the confluence of two large rivers: the case of the Parana and Paraguay Rivers. J Hydrol 528:161–176

    Article  CAS  Google Scholar 

  • Carturan L, Zuecco G, Seppi R, Zanoner T, Borga M, Carton A, Dalla Fontana G (2015) Catchment-scale permafrost mapping using spring water characteristics. Permafrost Periglacial Process. Early View

    Google Scholar 

  • Castagna M, Bellin A, Chiogna G (2015) Uncertainty estimation and evaluation of shallow aquifers’ exploitability: the case study of the Adige Valley Aquifer (Italy). Water 7:3367–3395

    Article  Google Scholar 

  • Chiogna G, Santoni E, Camin F, Tonon A, Majone B, Trenti A, Bellin A (2014) Stable isotope characterization of the Vermigliana catchment. J Hydrol 509:295–305

    Article  CAS  Google Scholar 

  • Chiogna G, Majone B, Cano Paoli K, Diamantini E, Stella E, Mallucci S, Lencioni V, Zandonai F, Bellin A (2016) A review of hydrological and chemical stressors in the Adige catchment and its ecological status. Sci Total Environ 540:429–443

    Article  CAS  Google Scholar 

  • Corazzari L, Bianchini G, Billi P, Marchina C, Natali C (2016) A preliminary note on carbon and nitrogen elemental and isotopic composition of Po River suspended load. Rend Fis Acc Lincei. doi:10.1007/s12210-015-0460-z, in press

    Google Scholar 

  • Cozzi S, Giani M (2011) River water and nutrient discharges in the northern Adriatic Sea: current importance and long term changes. Cont Shelf Res 31:1881–1893

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  CAS  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

  • Donnini M, Frondini F, Probst J-L, Probst A, Cardellini C, Marchesini I, Guzzetti F (2016) Chemical weathering and consumption of atmospheric carbon dioxide in the Alpine region. Glob Planet Change 136:65–81

    Article  Google Scholar 

  • Engel M, Penna D, Bertoldi G, Dell’Agnese A, Soulsby C, Comiti F (2015) Identifying run-off contributions during melt-induced run-off events in a glacierized alpine catchment. Hydrol Process. doi:10.1002/hyp.10577, in press

    Google Scholar 

  • Fischer BMC, Rinderer M, Scheneider P, Ewen T, Seibert J (2015) Contributing sources to baseflow in pre-alpine headwaters using spatial snapshot sampling. Hydrol Process 29:5321–5336

    Article  Google Scholar 

  • Fossato VU (1971) Ricerche idrologiche e chimico-fisiche sul fiume Adige a Boara Pisani. Giugno 1968–giugno 1970. Arch Oceanogr Limnol 17:105–123

    CAS  Google Scholar 

  • Fuganti A, Morteani G, Bazzoli G, Cocco S, Santuliana E, Visintainer M (2005) L’ arsenico nelle rocce, nelle acque superficiali e nelle acque sotterranee della valle dell’ Adige fra Mezzolombardo e Mattarello e presso Roveré della luna (Trento). Atti Accademia Roveretana degli Agiati, a. 255, ser VIII, vol V, B

  • Gaillardet J (2014) Trace elements in river waters. Treatise on Geochemistry, 2nd Edition 7:195–235

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  CAS  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Article  CAS  Google Scholar 

  • Haldler J, Terzer S, Wassenaar LI, Araguás-Araguás LJ, Aggarwal PK (2015) The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research. Hydrol Earth Syst Sci 19:3419–3431

    Article  Google Scholar 

  • Harker L, Hutcheon I, Mayer B (2015) Use of major ion and stable isotope geochemistry to delineate natural and anthropogenic sources of nitrate and sulfate in the Kettle River Basin, British Columbia, Canada. C R Geosci 347:338–347

    Article  Google Scholar 

  • Hartmann J, Lauerwald R, Moosdorf N (2014) A brief overview of the GLObal River Chemistry database GLORICH. Procedia Earth Planet Sci 10:23–27

  • Huss M (2011) Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour Res 47, W07511

    Article  Google Scholar 

  • Klaus J, McDonnell JJ (2013) Hydrograph separation using stable isotopes: review and evaluation. J Hydrol 505:47–64

    Article  CAS  Google Scholar 

  • Koundouri P, Ker Rault P, Pergamalis V, Skianis V, Souliotis I (2016) Development of an integrated methodology for the sustainable environmental and socio-economic management of river ecosystems. Sci Total Environ 540:90–100

    Article  CAS  Google Scholar 

  • Kszos LA, Stewart AJ (2003) Review of lithium in the aquatic environment: distribution in the United States, toxicity and case example of groundwater contamination. Ecotoxicology 12:439–447

    Article  CAS  Google Scholar 

  • Leibundgut C, Maloszewski P, Külls P (2009) Tracers in hydrology (Chapter 7.5). Wiley, Oxford, UK

    Book  Google Scholar 

  • Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88

    Article  CAS  Google Scholar 

  • Marchina C, Bianchini G, Natali C, Pennisi M, Colombani N, Tassinari R, Knoeller K (2015) The Po River water from the Alps to the Adriatic Sea (Italy): new insights from geochemical and isotopic (δ18O-δD) data. Environ Sci Pollut Res 22:5184–5203

    Article  CAS  Google Scholar 

  • Marchina C, Bianchini G, Natali C, Knöller K (2016) Geochemical and isotopic analyses on the Po delta water: insights to understand a complex riverine ecosystem. Rend Fis Acc Lincei. doi:10.1007/s12210-015-0465-7, in press

    Google Scholar 

  • Meybeck M (2003) Global occurrence of major elements in rivers. Treatise on Geochemistry vol 5:207–223

    Article  Google Scholar 

  • Milner AM, Brown LE, Hannah DM (2009) Hydroecological effects of shrinking glaciers. Hydrol Process 23:62–77

    Article  CAS  Google Scholar 

  • Mohammed N, Celle-Jeanton H, Huneau F, Le Coustumer P, Lavastre V, Bertrand G, Charrier G, Clauzet ML (2014) Isotopic and geochemical identification of main groundwater supply sources to an alluvial aquifer, the Allier River valley (France). J Hydrol 508:181–196

    Article  CAS  Google Scholar 

  • Möller P, Morteani G, Dulski P (2003) Anomalous gadolinium, cerium, and yttrium contents in the Adige and Isarco River waters and in the water of their tributaries (Provinces Trento and Bolzano/Bozen, NE Italy). Acta Hydroch Hydrob 31:225–239

    Article  Google Scholar 

  • Naldi M, Pierobon E, Tornatore F, Viaroli P (2010) Il ruolo degli eventi di piena nella formazione e distribuzione temporale dei carichi di fosforo e azoto nel fiume Po. Biologia Ambientale 24:59–69

    Google Scholar 

  • Norbiato D, Borga M, Merz R, Blöschl G, Carton A (2009) Controls on event runoff coefficients in the eastern Italian Alps. J Hydrol 375:312–325

    Article  Google Scholar 

  • Peng T-R, Chen K-Y, Zhan W-C, Lu W-C, Tong L-TJ (2015) Use of stable water isotopes to identify hydrological processes of meteoric water in montane catchments. Hydrol Process 29:4957–4967

    Article  CAS  Google Scholar 

  • Penna D, Stenni B, Šanda M, Wrede S, Bogaard TA, Michelini M, Fischer BMC, Gobbi A, Mantese N, Zuecco G, Borga M, Bonazza M, Sobotková M, Čejková BC, Wassenaar LI (2012) Technical Note: Evaluation of between-sample memory effects in the analysis of δ2H and δ18O of water samples measured by laser spectroscopes. Hydrol Earth Syst Sci 16:3925–3933

    Article  CAS  Google Scholar 

  • Penna D, Mao L, Comiti F, Engel M, Dell’Agnese A, Bertoldi G (2013) Hydrological effects of glacier melt and snowmelt in a high-elevation catchment. Die Bodenkultur 64:93–98

    Google Scholar 

  • Penna D, Engel M, Mao L, Dell'Agnese A, Bertoldi G, Comiti F (2014) Tracer-based analysis of spatial and temporal variations of water sources in a glacierized catchment. Hydrol Earth Syst Sci 18:5271–5288

    Article  Google Scholar 

  • Pettine M, Patrolecco M, Camusso M, Crescenzio S (1998) Transport of carbon and nitrogen to the northern Adriatic Sea by the Po River. Estuar Coast Shelf S 46:127–142

    Article  CAS  Google Scholar 

  • Provincia Autonoma di Bolzano (2010). PGUAP — Piano Generale di Utilizzazione delle Acque Pubbliche. Bolzano. URL: http://www.provincia.bz.it/agenzia-ambiente/acqua/piano-generale-acqua.asp

  • Provincia Autonoma di Trento (2006). PGUAP — Piano Generale di Utilizzazione delle Acque Pubbliche. Trento. URL: http://pguap.provincia.tn.it/

  • Ryan P (2014) Environmental low temperature geochemistry. Wiley Blackwell, Chichester, West Sussex (UK), p 402

    Google Scholar 

  • Viaroli P, Nizzoli D, Pinardi M, Soana E, Bartoli M (2015) Eutrophication of the Mediterranean Sea: a watershed-cascading aquatic filter approach. Rend Fis Acc Lincei 26:13–23

    Article  Google Scholar 

  • Viers J, Oliva P, Dandurand JL, Dupré B, Gaillardet J (2014) Chemical weathering rates, CO2 consumption, and control parameters deduced from the chemical composition of rivers. Treatise on Geochemistry, 2nd Edition 7:175–190

    Article  Google Scholar 

  • Vörösmarty CJ, Pahl-Wostl C, Bhaduri A (2013) Water in the anthropocene: new perspectives for global sustainability. Curr Opin Environ Sustain 5:535–538

    Article  Google Scholar 

  • Voss BM, Peucker-Ehrenbrink B, Eglinton TI, Fiske G, Wang ZA et al (2014) Tracing river chemistry in space and time: dissolved inorganic constituents of the Fraser River, Canada. Geochim Cosmochim Ac 124:283–308

    Article  CAS  Google Scholar 

  • Zhou S, Zheng W, Joswiak DR (2014) From precipitation to runoff: stable isotopic fractionation effect of glacier melting on a catchment scale. Hydrol Process 28:3341–3349

    Article  CAS  Google Scholar 

  • Zuppi GM, Bortolami G (1982) Hydrogeology: a privileged field for environmental stable isotopes applications. Some Italian examples. Rendiconti Società Italiana di Mineralogia e Petrologia 38:1197–1212

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. R. Tassinari and Dr. D. Di Giuseppe for ICP-MS and IC analyses and the three anonymous referees and the editor for their constructive comments that helped to improve earlier versions of the manuscript. The study was funded in part by the European Fund of Regional Development (POR FESR 2007-2013), Terra&AcquaTech Labs., Technopole of Ferrara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bianchini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natali, C., Bianchini, G., Marchina, C. et al. Geochemistry of the Adige River water from the Eastern Alps to the Adriatic Sea (Italy): evidences for distinct hydrological components and water-rock interactions. Environ Sci Pollut Res 23, 11677–11694 (2016). https://doi.org/10.1007/s11356-016-6356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6356-3

Keywords

Navigation