Skip to main content

A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment

Abstract

The rational for the study was to review the literature on the toxicity and corresponding mechanisms associated with lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As), individually and as mixtures, in the environment. Heavy metals are ubiquitous and generally persist in the environment, enabling them to biomagnify in the food chain. Living systems most often interact with a cocktail of heavy metals in the environment. Heavy metal exposure to biological systems may lead to oxidation stress which may induce DNA damage, protein modification, lipid peroxidation, and others. In this review, the major mechanism associated with toxicities of individual metals was the generation of reactive oxygen species (ROS). Additionally, toxicities were expressed through depletion of glutathione and bonding to sulfhydryl groups of proteins. Interestingly, a metal like Pb becomes toxic to organisms through the depletion of antioxidants while Cd indirectly generates ROS by its ability to replace iron and copper. ROS generated through exposure to arsenic were associated with many modes of action, and heavy metal mixtures were found to have varied effects on organisms. Many models based on concentration addition (CA) and independent action (IA) have been introduced to help predict toxicities and mechanisms associated with metal mixtures. An integrated model which combines CA and IA was further proposed for evaluating toxicities of non-interactive mixtures. In cases where there are molecular interactions, the toxicogenomic approach was used to predict toxicities. The high-throughput toxicogenomics combines studies in genetics, genome-scale expression, cell and tissue expression, metabolite profiling, and bioinformatics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Agrawal S, Flora G, Bhatnagar P, Flora S (2014) Comparative oxidative stress, metallothionein induction and organ toxicity following chronic exposure to arsenic, lead and mercury in rats. Cell Mol Biol (Noisy-le-Grand, France) 60:13

    CAS  Google Scholar 

  2. Ahamed M, Verma S, Kumar A, Siddiqui M (2005) Environmental exposure to lead and its correlation with biochemical indices in children. Sci Total Environ 346:48–55

    CAS  Article  Google Scholar 

  3. Ahmed MK, Habibullah-Al-Mamun M, Parvin E, Akter MS, Khan MS (2013) Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus). Exp Toxicol Pathol 65:903–909, http://dx.doi.org/10.1016/j.etp.2013.01.003

    CAS  Article  Google Scholar 

  4. Alloway BJ (2013) Bioavailability of elements in soil. Essentials of medical geology. Springer 2013:351–73

    Google Scholar 

  5. Altenburger R, Backhaus T, Boedeker W, Faust M, Scholze M, Grimme LH (2000) Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: mixtures composed of similarly acting chemicals. Environ Toxicol Chem 19:2341–2347

    CAS  Article  Google Scholar 

  6. Altenburger R, Nendza M, Schüürmann G (2003) Mixture toxicity and its modeling by quantitative structure‐activity relationships. Environ Toxicol Chem 22:1900–1915

    CAS  Article  Google Scholar 

  7. Altenburger R, Backhaus T, Boedeker W, Faust M, Scholze M (2013) Simplifying complexity: mixture toxicity assessment in the last 20 years. Environ Toxicol Chem 32:1685–1687

    CAS  Article  Google Scholar 

  8. Arabi M, Mohammadpour A (2006) Adverse effects of cadmium on bull spermatozoa. Vet Res Commun 30:943–951

    CAS  Article  Google Scholar 

  9. Backhaus T, Altenburger R, Boedeker W, Faust M, Scholze M, Grimme LH (2000) Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environ Toxicol Chem 19:2348–2356

    CAS  Article  Google Scholar 

  10. Balistrieri LS, Mebane CA (2014) Predicting the toxicity of metal mixtures. Sci Total Environ 466:788–799

    Article  CAS  Google Scholar 

  11. Baranowska-Bosiacka I et al (2009) Inhibition of erythrocyte phosphoribosyltransferases (APRT and HPRT) by Pb2+: a potential mechanism of lead toxicity. Toxicology 259:77–83

    CAS  Article  Google Scholar 

  12. Basile A, Sorbo S, Conte B, Cobianchi RC, Trinchella F, Capasso C, Carginale V (2012) Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Int J Phytorem 14:374–387

    CAS  Article  Google Scholar 

  13. Belden JB, Gilliom RJ, Lydy MJ (2007) How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr Environ Assess Manage 3:364–372

    CAS  Article  Google Scholar 

  14. Benson NU, Anake WU, Olanrewaju IO (2013) Analytical relevance of trace metal speciation in environmental and biophysicochemical systems. Am J Anal Chem 4:633–641

    CAS  Article  Google Scholar 

  15. Beyer J, Petersen K, Song Y, Ruus A, Grung M, Bakke T, Tollefsen KE (2013) Environmental risk assessment of combined effects in aquatic ecotoxicology: a discussion paper. Mar Environ Res 96:81–91

    Article  CAS  Google Scholar 

  16. Blakey DH et al (2013) A screening tool to prioritize public health risk associated with accidental or deliberate release of chemicals into the atmosphere. BMC Public Health 13:253

    CAS  Article  Google Scholar 

  17. Boelsterli UA (2003) Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Toxicol Appl Pharmacol 192:307–322

    CAS  Article  Google Scholar 

  18. Boelsterli UA (2007) Mechanistic toxicology: the molecular basis of how chemicals disrupt biological targets. CRC Press.

  19. Borgert CJ, Quill TF, McCarty LS, Mason AM (2004) Can mode of action predict mixture toxicity for risk assessment? Toxicol Appl Pharmacol 201:85–96

    CAS  Article  Google Scholar 

  20. Boucher O et al (2014) Domain-specific effects of prenatal exposure to PCBs, mercury, and lead on infant cognition: results from the Environmental Contaminants and Child Development Study in Nunavik. Environ Health Perspect 122:310–316

    Article  Google Scholar 

  21. Bustaffa E, Stoccoro A, Bianchi F, Migliore L (2014) Genotoxic and epigenetic mechanisms in arsenic carcinogenicity. Arch Toxicol 88:1043–1067

    CAS  Article  Google Scholar 

  22. Calmano W, Hong J, Förstner U (1993) Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28:223–223

    CAS  Google Scholar 

  23. Campbel P (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. Metal speciation and bioavailability in aquatic systems

    Google Scholar 

  24. Carocci A, Rovito N, Sinicropi MS, Genchi G (2014) Mercury toxicity and neurodegenerative effects. In: Reviews of environmental contamination and toxicology. Springer, pp. 1–18

  25. Carpenter DO, Arcaro K, Spink DC (2002) Understanding the human health effects of chemical mixtures. Environ Health Perspect 110:25–42

    CAS  Article  Google Scholar 

  26. Charles J, Crini G, Degiorgi F, Sancey B, Morin-Crini N, Badot P-M (2014) Unexpected toxic interactions in the freshwater amphipod Gammarus pulex (L.) exposed to binary copper and nickel mixtures. Environ Sci Pollut Res 21:1099–1111

    CAS  Article  Google Scholar 

  27. Chen J et al (2012) Developmental lead acetate exposure induces embryonic toxicity and memory deficit in adult zebrafish. Neurotoxicol Teratol 34:581–586

    CAS  Article  Google Scholar 

  28. Chen J et al (2013) Comparison of two mathematical prediction models in assessing the toxicity of heavy metal mixtures to the feeding of the nematode (Caenorhabditis elegans). Ecotoxicol Environ Safe 94:73–79

    CAS  Article  Google Scholar 

  29. Choy M-K, Movassagh M, Goh H-G, Bennett MR, Down TA, Foo RS (2010) Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated. BMC Genomics 11:519

    Article  CAS  Google Scholar 

  30. Coecke S et al (2013) Toxicokinetics as a key to the integrated toxicity risk assessment based primarily on non-animal approaches. Toxicol in Vitro 27:1570–1577

    CAS  Article  Google Scholar 

  31. Das H, Mitra AK, Sengupta P, Hossain A, Islam F, Rabbani G (2004) Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int 30:383–387

    CAS  Article  Google Scholar 

  32. de Orte MR, Sarmiento AM, Basallote MD, Rodríguez-Romero A, Riba I, delValls A (2014) Effects on the mobility of metals from acidification caused by possible CO2+ leakage from sub-seabed geological formations. Sci Total Environ 470:356–363

    Article  CAS  Google Scholar 

  33. Delnomdedieu M, Basti MM, Styblo M, Otvos JD, Thomas DJ (1994) Complexation of arsenic species in rabbit. Chem Res Toxicol 7:621–627

    CAS  Article  Google Scholar 

  34. Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383–2396

    Article  Google Scholar 

  35. Dixon HB (1997) The biochemical action of arsonic acids especially as phosphate analogues. Adv Inorg Chem 44:191–228

    CAS  Article  Google Scholar 

  36. Domínguez-Cortinas G, Díaz-Barriga F, Martínez-Salinas RI, Cossío P, Pérez-Maldonado IN (2013) Exposure to chemical mixtures in Mexican children: high-risk scenarios. Environ Sci Pollut Res 20:351–357

    Article  CAS  Google Scholar 

  37. Dopp E, von Recklinghausen U, Diaz-Bone R, Hirner A, Rettenmeier A (2010) Cellular uptake, subcellular distribution and toxicity of arsenic compounds in methylating and non-methylating cells. Environ Res 110:435–442

    CAS  Article  Google Scholar 

  38. Dorne JL, Ragas A, Frampton G, Spurgeon D, Lewis D (2007) Trends in human risk assessment of pharmaceuticals. Anal Bioanal Chem 387:1167–1172

    CAS  Article  Google Scholar 

  39. Drescher K, Boedeker W (1995) Assessment of the combined effects of substances: the relationship between concentration addition and independent action. Biometrics 51:716–730

    Article  Google Scholar 

  40. Easwaran H, Baylin SB (2013) Epigenetic abnormalities in cancer find a “home on the range”. Cancer Cell 23:1–3

    CAS  Article  Google Scholar 

  41. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    CAS  Article  Google Scholar 

  42. Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980, http://dx.doi.org/10.1016/j.envint.2004.03.001

    CAS  Article  Google Scholar 

  43. El-Nekeety AA, El-Kady AA, Soliman MS, Hassan NS, Abdel-Wahhab MA (2009) Protective effect of Aquilegia vulgaris (L.) against lead acetate-induced oxidative stress in rats. Food Chem Toxicol 47:2209–2215

    CAS  Article  Google Scholar 

  44. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Cur Top Med Chem 1:529–539

    CAS  Article  Google Scholar 

  45. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    CAS  Article  Google Scholar 

  46. Fan W, Wang W-X, Chen J, Li X, Yen Y-F (2002) Cu, Ni, and Pb speciation in surface sediments from a contaminated bay of Northern China. Mar Pollut Bull 44:820–826

    CAS  Article  Google Scholar 

  47. Farina M, Campos F, Vendrell I, Berenguer J, Barzi M, Pons S, Suñol C (2009) Probucol increases glutathione peroxidase-1 activity and displays long-lasting protection against methylmercury toxicity in cerebellar granule cells. Toxicol Sci 112:416–426

    CAS  Article  Google Scholar 

  48. Farina M, Rocha JB, Aschner M (2011) Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life S ci 89:555–563

    CAS  Article  Google Scholar 

  49. Fathallah S, Medhioub MN, Kraiem MM (2013) Combined toxicity of lead and cadmium on embryogenesis and early larval stages of the European clam Ruditapes decussatus. Environ Eng Sci 30:357–364

    CAS  Article  Google Scholar 

  50. Faulk C, Barks A, Sánchez BN, Zhang Z, Anderson OS, Peterson KE, Dolinoy DC (2014) Perinatal lead (Pb) exposure results in sex-specific effects on food intake, fat, weight, and insulin response across the murine life-course. PLoS One 9:e104273

    Article  CAS  Google Scholar 

  51. Feki-Tounsi M, Olmedo P, Gil F, Khlifi R, Mhiri M-N, Rebai A, Hamza-Chaffai A (2013) Cadmium in blood of Tunisian men and risk of bladder cancer: interactions with arsenic exposure and smoking. Environ Sci Pollut Res 20:7204–7213

    CAS  Article  Google Scholar 

  52. Feldkamp ML, Srisukhumbowornchai S, Romitti PA, Olney RS, Richardson SD, Botto LD (2014) Self‐reported maternal cigarette smoke exposure during the periconceptional period and the risk for omphalocoele. Paediatr Perinat Ep 28:67–73

    Article  Google Scholar 

  53. Fowler BA (1993) Mechanisms of kidney cell injury from metals. Environ Health Perspect 100:57–63

    CAS  Article  Google Scholar 

  54. Gargouri M, Magné C, Dauvergne X, Ksouri R, El Feki A, Metges M-AG, Talarmin H (2013) Cytoprotective and antioxidant effects of the edible halophyte Sarcocornia perennis L. (swampfire) against lead-induced toxicity in renal cells. Ecotox Environ Safe 95:44–51

    CAS  Article  Google Scholar 

  55. Golding J, Steer CD, Hibbeln JR, Emmett PM, Lowery T, Jones R (2013) Dietary predictors of maternal prenatal blood mercury levels in the ALSPAC birth cohort study. Environ Health Perspect 121:1214–1218

    Google Scholar 

  56. Goldman SM (2014) Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol 54:141–164

    CAS  Article  Google Scholar 

  57. Grandjean P, Weihe P, Debes F, Choi AL, Budtz-Jørgensen E (2014) Neurotoxicity from prenatal and postnatal exposure to methylmercury. Neurotoxicol Teratol 43:39–44

    CAS  Article  Google Scholar 

  58. Guzzi G, La Porta CA (2008) Molecular mechanisms triggered by mercury. Toxicology 244:1–12

    CAS  Article  Google Scholar 

  59. Hambach R et al (2013) Co-exposure to lead increases the renal response to low levels of cadmium in metallurgy workers. Toxicol Lett 222:233–238

    CAS  Article  Google Scholar 

  60. Hamelink J, Landrum PF, Bergman H, Benson WH (1994) Bioavailability: physical, chemical, and biological interactions. CRC Press.

  61. He J et al (2013) Repression of miR-143 mediates Cr (VI)-induced tumor angiogenesis via IGF-IR/IRS1/ERK/IL-8 pathway. Toxicol Sci 134:26–38

    CAS  Article  Google Scholar 

  62. He J et al (2014) Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 pathway. Environ Health Perspect 122:255–261

    Google Scholar 

  63. Hernández-García A, Romero D, Gómez-Ramírez P, María-Mojica P, Martínez-López E, García-Fernández A (2014) In vitro evaluation of cell death induced by cadmium, lead and their binary mixtures on erythrocytes of common buzzard (Buteo buteo). Toxicol in Vitro 28:300–306

    Article  CAS  Google Scholar 

  64. Hsu P-C, Guo YL (2002) Antioxidant nutrients and lead toxicity. Toxicology 180:33–44

    CAS  Article  Google Scholar 

  65. Hu L, Greer JB, Solo-Gabriele H, Fieber LA, Cai Y (2013) Arsenic toxicity in the human nerve cell line SK-N-SH in the presence of chromium and copper. Chemosphere 91:1082–1087

    CAS  Article  Google Scholar 

  66. Hubaux R, Becker-Santos DD, Enfield KS, Rowbotham D, Lam S, Lam WL, Martinez VD (2013) Molecular features in arsenic-induced lung tumors. Mol Cancer 12:20

    CAS  Article  Google Scholar 

  67. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123:305–332

    CAS  Article  Google Scholar 

  68. Inakollu S, Hung H-C, Shreve GS (2004) Biosurfactant enhancement of microbial degradation of various structural classes of hydrocarbon in mixed waste systems. Environ Eng Sci 21:463–469

    CAS  Article  Google Scholar 

  69. Jadhav S, Sarkar S, Tripathi H (2006) Cytogenetic effects of a mixture of selected metals following subchronic exposure through drinking water in male rats. Ind J Exp Biol 44:997

    CAS  Google Scholar 

  70. Jadhav S, Sarkar S, Patil R, Tripathi H (2007a) Effects of subchronic exposure via drinking water to a mixture of eight water-contaminating metals: a biochemical and histopathological study in male rats. Arch Environ Con Tox 53:667–677

    CAS  Article  Google Scholar 

  71. Jadhav S, Sarkar S, Ram G, Tripathi H (2007b) Immunosuppressive effect of subchronic exposure to a mixture of eight heavy metals, found as groundwater contaminants in different areas of India, through drinking water in male rats. Arch Environ Con Tox 53:450–458

    CAS  Article  Google Scholar 

  72. Jadhav SH, Sarkar SN, Kataria M, Tripathi HC (2007c) Subchronic exposure to a mixture of groundwater-contaminating metals through drinking water induces oxidative stress in male rats. Environ Toxicol Phar 23:205–211

    CAS  Article  Google Scholar 

  73. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    CAS  Article  Google Scholar 

  74. Jones EA, Wright JM, Rice G, Buckley BT, Magsumbol MS, Barr DB, Williams BL (2010) Metal exposures in an inner-city neonatal population. Environ Int 36:649–654

    CAS  Article  Google Scholar 

  75. Judah L, Marin R, Stroup D, Wesdemiotis C, Bose RN (2014) DNA damage by oxo-and peroxo-chromium(V) complexes: insight into the mutation and carcinogenesis mechanisms. Toxicol Res 3:56–66

    CAS  Article  Google Scholar 

  76. Kang M-Y, Cho S-H, Lim Y-H, Seo J-C, Hong Y-C (2013) Effects of environmental cadmium exposure on liver function in adults. Occ Environ Med 70:268–273

    CAS  Article  Google Scholar 

  77. Katayama A et al. (2010) Bioavailability of xenobiotics in the soil environment. In: Reviews of environmental contamination and toxicology. Springer, pp. 1–86

  78. Kitchin KT, Conolly R (2009) Arsenic-induced carcinogenesis oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment. Chem Res Toxicol 23:327–335

    Article  CAS  Google Scholar 

  79. Koedrith P, Kim H, Weon J-I, Seo YR (2013) Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Heal 216:587–598

    CAS  Article  Google Scholar 

  80. Koh D-H et al (2014) Calibrating a population-based job-exposure matrix using inspection measurements to estimate historical occupational exposure to lead for a population-based cohort in Shanghai, China. J Exp Sci Env Epid 24:9–16

    Article  Google Scholar 

  81. Korsloot A, Van Gestel CA, Van Straalen NM (2004) Environmental stress and cellular response in arthropods. CRC Press.

  82. Kortenkamp A (2008) Low dose mixture effects of endocrine disrupters: implications for risk assessment and epidemiology. Int J Androl 31:233–240

    CAS  Article  Google Scholar 

  83. Kovacic P, Somanathan R (2014) Recent developments in the mechanism of teratogenesis–electron transfer, reactive oxygen species, and antioxidants. Systems Biology of Free Radicals and Antioxidants 567–580

  84. Lantz RC, Hays AM (2006) Role of oxidative stress in arsenic-induced toxicity. Drug Metab Rev 38:791–804

    CAS  Article  Google Scholar 

  85. Le MT, Hassanin M, Mahadeo M, Gailer J, Prenner EJ (2013a) Hg-and Cd-induced modulation of lipid packing and monolayer fluidity in biomimetic erythrocyte model systems. Chem Phys Lipids 170:46–54

    Article  CAS  Google Scholar 

  86. Le T-H et al (2013b) Proteomic analysis in Daphnia magna exposed to As(III), As(V) and Cd heavy metals and their binary mixtures for screening potential biomarkers. Chemosphere 93:2341–2348

    CAS  Article  Google Scholar 

  87. Liao C, Tsai J, Ling M, Liang H, Chou Y, Yang P (2004) Organ-specific toxicokinetics and dose–response of arsenic in tilapia Oreochromis mossambicus. Arch Environ Con Tox 47:502–510

    CAS  Article  Google Scholar 

  88. Lin S, Cullen WR, Thomas DJ (1999) Methylarsenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase. Chem Res Toxicol 12:924–930

    CAS  Article  Google Scholar 

  89. Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharm 238:209–214

    CAS  Article  Google Scholar 

  90. Llop J, Estrela‐Lopis I, Ziolo RF, González A, Fleddermann J, Dorn M, Vallejo VG, Simon‐Vazquez R, Donath E, Mao Z (2014) Uptake, biological fate, and toxicity of metal oxide nanoparticles. Part Part Syst Char 31:24–35

    CAS  Article  Google Scholar 

  91. Løkke H, Ragas AM, Holmstrup M (2013) Tools and perspectives for assessing chemical mixtures and multiple stressors. Toxicology 313:73–82

    Article  CAS  Google Scholar 

  92. Lu K et al (2014) Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122:284–291

    Google Scholar 

  93. Luo W, Verweij RA, van Gestel CA (2014) Determining the bioavailability and toxicity of lead contamination to earthworms requires using a combination of physicochemical and biological methods. Environ Pollut 185:1–9

    CAS  Article  Google Scholar 

  94. Lydy MJ, Belden JB, Ternes MA (1999) Effects of temperature on the toxicity of M-parathion, chlorpyrifos, and pentachlorobenzene to Chironomus tentans. Arch Environ Con Tox 37:542–547. doi:10.1007/s002449900550

    CAS  Article  Google Scholar 

  95. Marsano F, Boatti L, Ranzato E, Cavaletto M, Magnelli V, Dondero F, Viarengo A (2010) Effects of mercury on Dictyostelium discoideum: proteomics reveals the molecular mechanisms of physiological adaptation and toxicity. J Proteome Res 9:2839–2854

    CAS  Article  Google Scholar 

  96. Martínez-Pacheco M, Hidalgo-Miranda A, Romero-Córdoba S, Valverde M, Rojas E (2014) mRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects. Gene 533:508–514

    Article  CAS  Google Scholar 

  97. Mohapatra P et al (2014) The contribution of heavy metals in cigarette smoke condensate to malignant transformation of breast epithelial cells and in vivo initiation of neoplasia through induction of a PI3K–AKT–NFκB cascade. Toxicol Appl Pharm 274:168–179

    CAS  Article  Google Scholar 

  98. Mousa AM, Al-Fadhli AS, Rao MS, Kilarkaje N (2014) Gestational lead exposure induces developmental abnormalities and up-regulates apoptosis of fetal cerebellar cells in rats. Drug Chem Toxicol 38:33–83

    Google Scholar 

  99. Mulware SJ (2013) Trace elements and carcinogenicity: a subject in review. 3 Biotech 3:85–96

    Article  Google Scholar 

  100. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121:295–302

    CAS  Article  Google Scholar 

  101. Nawrot TS et al (2010) Cadmium exposure in the population: from health risks to strategies of prevention. Biometals 23:769–782

    CAS  Article  Google Scholar 

  102. Nikinmaa M (2014) Chapter 6—factors affecting the bioavailability of chemicals. In: Nikinmaa M (ed) An introduction to aquatic toxicology. Academic, Oxford, pp 65–72, http://dx.doi.org/10.1016/B978-0-12-411574-3.00006-2

    Google Scholar 

  103. Nordberg GF, Jin T, Hong F, Zhang A, Buchet J-P, Bernard A (2005) Biomarkers of cadmium and arsenic interactions. Toxicol Appl Pharmacol 206(2):191–197

  104. Notarachille G, Arnesano F, Calò V, Meleleo D (2014) Heavy metals toxicity: effect of cadmium ions on amyloid beta protein 1–42. Possible implications for Alzheimer’s disease. BioMetals 27:371–388

    CAS  Article  Google Scholar 

  105. Nyland JF et al (2011) Biomarkers of methylmercury exposure immunotoxicity among fish consumers in Amazonian Brazil. Environ Health Perspect 119:1733–1738

    CAS  Article  Google Scholar 

  106. Oguma A, Klerks P (2013) The role of native salinity regime on grass shrimp (Palaemonetes pugio) sensitivity to cadmium. Ecotoxicology 22:279–286. doi:10.1007/s10646-012-1024-y

    CAS  Article  Google Scholar 

  107. Olmstead AW, LeBlanc GA (2005) Toxicity assessment of environmentally relevant pollutant mixtures using a heuristic model. Int Environ Asses Mgt 1:114–122

    CAS  Article  Google Scholar 

  108. Patrick L (2003) Toxic metals and antioxidants: part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev 8:106–128

    Google Scholar 

  109. Patrick L (2006) Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev 11:114–127

    Google Scholar 

  110. Payne J, Scholze M, Kortenkamp A (2001) Mixtures of four organochlorines enhance human breast cancer cell proliferation. Environ Health Perspect 109:391–397

    CAS  Article  Google Scholar 

  111. Piazza V, Gambardella C, Canepa S, Costa E, Faimali M, Garaventa F (2016) Temperature and salinity effects on cadmium toxicity on lethal and sublethal responses of Amphibalanus amphitrite nauplii. Ecotox Environ Safe 123:8–17

    CAS  Article  Google Scholar 

  112. Pimentel D, Cooperstein S, Randell H, Filiberto D, Sorrentino S, Kaye B, Nicklin C, Yagi J, Brian J, O’Hern J (2007) Ecology of increasing diseases: population growth and environmental degradation. Hum Ecol 35:653–668

    Article  Google Scholar 

  113. Prato E, Scardicchio C, Biandolino F (2008) Effects of temperature on the acute toxicity of cadmium to Corophium insidiosum. Environ Monit Assess 136:161–166

    CAS  Article  Google Scholar 

  114. Pretto A, Loro VL, Morsch VM, Moraes BS, Menezes C, Santi A, Toni C (2014) Alterations in carbohydrate and protein metabolism in silver catfish (Rhamdia quelen) exposed to cadmium. Ecotox Environ Safe 100:188–192

    CAS  Article  Google Scholar 

  115. Prüss-Ustün A, Vickers C, Haefliger P, Bertollini R (2011) Knowns and unknowns on burden of disease due to chemicals: a systematic review. Environ Health 10:9

    Article  Google Scholar 

  116. Pynnönen K (1995) Effect of pH, hardness and maternal pre-exposure on the toxicity of Cd, Cu and Zn to the glochidial larvae of a freshwater clam Anodonta cygnea. Water Res 29:247–254, http://dx.doi.org/10.1016/0043-1354(94)00126-R

    Article  Google Scholar 

  117. Qin L-T, Liu S-S, Zhang J, Xiao Q-F (2011) A novel model integrated concentration addition with independent action for the prediction of toxicity of multi-component mixture. Toxicology 280:164–172

    CAS  Article  Google Scholar 

  118. Qu R-J, Wang X-H, Feng M-B, Li Y, Liu H-X, Wang L-S, Wang Z-Y (2013) The toxicity of cadmium to three aquatic organisms (Photobacterium phosphoreum, Daphnia magna and Carassius auratus) under different pH levels. Ecotox Environ Safe 95:83–90

    CAS  Article  Google Scholar 

  119. Rahman MK, Choudhary MI, Arif M, Morshed MM (2014) Dopamine-β-hydroxylase activity and levels of its cofactors and other biochemical parameters in the serum of arsenicosis patients of Bangladesh. Int J Biom Sci 10:52–60

    CAS  Google Scholar 

  120. Rai NK, Ashok A, Rai A, Tripathi S, Nagar GK, Mitra K, Bandyopadhay S (2013) Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina. Toxicol Appl Pharmacol 273:424–258

    Google Scholar 

  121. Ramsey KA, Foong RE, Sly PD, Larcombe AN, Zosky GR (2013) Early life arsenic exposure and acute and long-term responses to influenza A infection in mice. Environ Health Perspect 121:1187–1193

    Google Scholar 

  122. Rashid K, Sinha K, Sil PC (2013) An update on oxidative stress-mediated organ pathophysiology. Food Chem Toxicol 62:584–600

    CAS  Article  Google Scholar 

  123. Reichard JF, Puga A (2010) Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics 2:87–104

    CAS  Article  Google Scholar 

  124. Reichard JF, Schnekenburger M, Puga A (2007) Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem Bioph Res Co 352:188–192

    CAS  Article  Google Scholar 

  125. Rider CV, LeBlanc GA (2005) An integrated addition and interaction model for assessing toxicity of chemical mixtures. Toxicol Sci 87:520–528

    CAS  Article  Google Scholar 

  126. Sabath E, Robles-Osorio ML (2012) Medio ambiente y riñón: nefrotoxicidad por metales pesados [Renal health and the environment: heavy metal nephrotoxicity]. Nefrologia 32:279–286

    Google Scholar 

  127. Sabolic I, Herak-Kramberger CM, Antolovic R, Breton S, Brown D (2006) Loss of basolateral invaginations in proximal tubules of cadmium-intoxicated rats is independent of microtubules and clathrin. Toxicology 218:149–163

    CAS  Article  Google Scholar 

  128. Saeki K, Okazaki M, Matsumoto S (1993) The chemical phase changes in heavy metals with drying and oxidation of the lake sediments. Water Res 27:1243–1251

    CAS  Article  Google Scholar 

  129. Sanz-Medel A (1998) Toxic trace metal speciation: importance and tools for environmental and biological analysis. Pure Appl Chem 70:2281–2285

    CAS  Article  Google Scholar 

  130. Shargorodsky J, Curhan SG, Henderson E, Eavey R, Curhan GC (2011) Heavy metals exposure and hearing loss in US adolescents. Arch Otolaryngol 137:1183–1189

    Article  Google Scholar 

  131. Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78

    CAS  Article  Google Scholar 

  132. Sijm D, Rikken M, Rorije E, Traas T, McLachlan M, Peijnenburg W (2007) Transport, accumulation and transformation processes. In: Risk assessment of chemicals. Springer, pp. 73–158

  133. Silva E, Rajapakse N, Kortenkamp A (2002) Something from “nothing”—eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36:1751–1756

    CAS  Article  Google Scholar 

  134. Singer MM, Tjeerdema RS (1993) Fate and effects of the surfactant sodium dodecyl sulfate. In: Reviews of environmental contamination and toxicology. Springer, pp. 95–149

  135. Smith E, Gancarz D, Rofe A, Kempson IM, Weber J, Juhasz AL (2012) Antagonistic effects of cadmium on lead accumulation in pregnant and non-pregnant mice. J Hazard Mater 199:453–456

    Article  CAS  Google Scholar 

  136. Soares FA, Farina M, Santos FW, Souza D, Rocha JBT, Nogueira CW (2003) Interaction between metals and chelating agents affects glutamate binding on brain synaptic membranes. Neurochem Res 28:1859–1865

    CAS  Article  Google Scholar 

  137. Spector JT, Navas-Acien A, Fadrowski J, Guallar E, Jaar B, Weaver VM (2011) Associations of blood lead with estimated glomerular filtration rate using MDRD, CKD-EPI and serum cystatin C-based equations. Nephrol Dial Transpl 26(9):2786–92. doi:10.1093/ndt/gfq773

    CAS  Article  Google Scholar 

  138. Spurgeon DJ, Jones OA, Dorne J-L, Svendsen C, Swain S, Stürzenbaum SR (2010) Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures. Sci Total Environ 408:3725–3734

    CAS  Article  Google Scholar 

  139. Stackelberg PE, Gibs J, Furlong ET, Meyer MT, Zaugg SD, Lippincott RL (2007) Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci Total Environ 377:255–272

    CAS  Article  Google Scholar 

  140. Steinberg CE (2012) Arms race between plants and animals: biotransformation system. In: Stress ecology. Springer, pp. 61–106

  141. Styblo M, Serves SV, Cullen WR, Thomas DJ (1997) Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem Res Toxicol 10:27–33

    CAS  Article  Google Scholar 

  142. Sugawara E, Nakamura K, Miyake T, Fukumura A, Seki Y (1991) Lipid peroxidation and concentration of glutathione in erythrocytes from workers exposed to lead. Br J Ind Med 48:239–242

    CAS  Google Scholar 

  143. Suter L, Babiss LE, Wheeldon EB (2004) Toxicogenomics in predictive toxicology in drug development. Chem Biol 11:161–171

    CAS  Article  Google Scholar 

  144. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164. doi:10.1007/978-3-7643-8340-4_6

    Google Scholar 

  145. Tollett V, Benvenutti E, Deer L, Rice T (2009) Differential toxicity to Cd, Pb, and Cu in dragonfly larvae (Insecta: Odonata). Arch Environ Con Tox 56:77–84

    CAS  Article  Google Scholar 

  146. Tsutsumi T, Ishihara A, Yamamoto A, Asaji H, Yamakawa S, Tokumura A (2014) The potential protective role of lysophospholipid mediators in nephrotoxicity induced by chronically exposed cadmium. Food Chem Toxicol 65:52–62

    CAS  Article  Google Scholar 

  147. Tyler CR, Allan AM (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep 1:132–147

    Article  Google Scholar 

  148. Valentino-Álvarez J, Núñez-Nogueira G, Fernández-Bringas L (2013) Acute toxicity of arsenic under different temperatures and salinity conditions on the white shrimp Litopenaeus vannamei. Biol Trace Elem Res 152:350–357. doi:10.1007/s12011-013-9635-6

    Article  CAS  Google Scholar 

  149. Van Kerkhove E, Pennemans V, Swennen Q (2010) Cadmium and transport of ions and substances across cell membranes and epithelia. Biometals 23:823–855

    CAS  Article  Google Scholar 

  150. Varotto L et al (2013) DNA damage and transcriptional changes in the gills of Mytilus galloprovincialis exposed to nanomolar doses of combined metal salts (Cd, Cu, Hg). PLoS One 8:e54602

    CAS  Article  Google Scholar 

  151. Vellinger C, Parant M, Rousselle P, Usseglio-Polatera P (2012) Antagonistic toxicity of arsenate and cadmium in a freshwater amphipod (Gammarus pulex). Ecotoxicology 21:1817–1827

    CAS  Article  Google Scholar 

  152. Vellinger C, Gismondi E, Felten V, Rousselle P, Mehennaoui K, Parant M, Usseglio-Polatera P (2013) Single and combined effects of cadmium and arsenate in Gammarus pulex (Crustacea, Amphipoda): understanding the links between physiological and behavioural responses. Aquat Toxicol 140:106–116

    Article  CAS  Google Scholar 

  153. Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    CAS  Article  Google Scholar 

  154. Wang G, Fowler BA (2008) Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxicol Appl Pharmacol 233:92–99

    CAS  Article  Google Scholar 

  155. Wang Y, Fang J, Leonard SS, Krishna Rao KM (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radical Biol Med 36:1434–1443

    CAS  Article  Google Scholar 

  156. Wang Z, Zhao Y, Smith E, Goodall GJ, Drew PA, Brabletz T, Yang C (2011) Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b. Toxicol Sci 121:110–122

    CAS  Article  Google Scholar 

  157. Waters M (2003) Systems toxicology and the Chemical Effects in Biological Systems (CEBS) knowledge base. Environ Health Perspect 111:811–812

    CAS  Article  Google Scholar 

  158. Wätjen W, Beyersmann D (2004) Cadmium-induced apoptosis in C6 glioma cells: influence of oxidative stress. Biometals 17:65–78

    Article  Google Scholar 

  159. Watson WA et al (2005) 2004 annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 23:589–666

    Article  Google Scholar 

  160. Weldon MM et al (2000) Mercury poisoning associated with a Mexican beauty cream. Western J Med 173:15

    CAS  Article  Google Scholar 

  161. Whittaker MH, Wang G, Chen X-Q, Lipsky M, Smith D, Gwiazda R, Fowler BA (2011) Exposure to Pb, Cd, and As mixtures potentiates the production of oxidative stress precursors: 30-day, 90-day, and 180-day drinking water studies in rats. Toxicol Appl Pharmacol 254:154–166

    CAS  Article  Google Scholar 

  162. WHO (1991) Environmental Health Criteria 118. Inorganic Mercury. International Program on Chemical Safety. World Health Organization, Geneva

  163. Wu B, Liu Z, Xu Y, Li D, Li M (2012) Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta). Ecotox Environ Safe 81:122–126

    CAS  Article  Google Scholar 

  164. Yang J-M, Arnush M, Chen Q-Y, Wu X-D, Pang B, Jiang X-Z (2003) Cadmium-induced damage to primary cultures of rat Leydig cells. Reprod Toxicol 17:553–560

    CAS  Article  Google Scholar 

  165. Yuan G et al (2014) Toxicological assessment of combined lead and cadmium: acute and sub-chronic toxicity study in rats. Food Chem Toxicol 65:260–268

    CAS  Article  Google Scholar 

  166. Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharm 20:351–360

    CAS  Article  Google Scholar 

  167. Zhang J et al (2013) Nephroprotective effect of calcium channel blockers against toxicity of lead exposure in mice. Toxicol Lett 218:273–280

    CAS  Article  Google Scholar 

  168. Zubero MB, Aurrekoetxea JJ, Ibarluzea JM, Arenaza MJ, Rodríguez C, Sáenz JR (2010) Heavy metal levels (Pb, Cd, Cr and Hg) in the adult general population near an urban solid waste incinerator. Sci Total Environ 408:4468–4474

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Collaborative Innovation Center of Technology and Material of Water Treatment, Specialized Research Fund for the Doctoral Program of Chinese Universities from the Ministry of Education (20113227110020), Open Fund Project from State Key Laboratory of Environmental Chemistry and Ecotoxicology (KF2011–20), and Graduate Innovative Projects in Jiangsu Province (KYLX_1067).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiangyang Wu or Liuqing Yang.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Cobbina, S.J., Mao, G. et al. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res 23, 8244–8259 (2016). https://doi.org/10.1007/s11356-016-6333-x

Download citation

Keywords

  • Metal mixtures
  • Low dose
  • Mode of action
  • Oxidative stress
  • Toxicogenomics