Skip to main content

Labile trace metal contribution of the runoff collector to a semi-urban river

Abstract

In this study, the distribution of labile trace metals (LTMs; Cd, Co, Cr, Cu, Ni, Pb, and Zn) in a semi-urban runoff collector was examined to assess its influence to a natural aqueous system (Jalle River, Bordeaux, France). This river is of high importance as it is part of a natural reserve dedicated to conserving aquatic flora and fauna. Two sampling campaigns with a differing precipitation condition (period 1, spring season; and period 2, summer season associated with storms) were considered. Precipitation and water flow were monitored. The collector is active as it is receptive to precipitation changes. It influences the river through discharging water, contributing LTMs, and channeling the mass fluxes. During period 2 where precipitation rate is higher, 25 % of the total water volume of the river was supplied by the collector. LTMs were detected at the collector. Measurements were done by using diffusive gradient in thin films (DGT) probes deployed during 1, 7, and 14 days in each period. The results showed that in an instantaneous period (day 1 or D1), most of these trace metals are above the environmental quality standards (Cd, Co, Cr, and Zn). The coefficient of determination (r 2 > 0.50) employed confirmed that the LTM concentrations in the downstream can be explained by the collector. While Co and Cr are from the upstream and the collector, Cd, Cu, and Zn are mostly provided by the collector. Ni, however, is mostly delivered by the upstream. Using the concentrations observed, the river can be affected by the collector in varying ways: (1) adding effect, resulting from the mix of the upstream and the collector (if upstream ˂ downstream); (2) diluted (if upstream ˃ downstream); and (3) conservative or unaffected (upstream ~ downstream). The range of LTM mass fluxes that the collector holds are as follows: (1) limited range or ˂10 g/day, Cd (0.04–1.75 g/day), Co (0.08–05.42 g/day), Ni (0.06–1.45 g/day), and Pb (0.08–9.89 g/day); (2) moderate range or 11–50 g/day, Cr (0.23–33.26 g/day) and Cu (0.77–37.88 g/day); and (3) wide range or ˃50 g/day, Zn (26.33–676.61 g/day). Hence, the collector is a major source of concern in terms of contamination. This is as the water with considerable LTMs is channeled openly to the river without any treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Baeyens W, Bowie AR, Buesseler K, Elskens M, Gao Y, Lamborg C, Leermakers M, Remenyi T, Zhang H (2011) Seize-fractionated labile trace elements in the Northwest Pacific and Southern Oceans. Mar Chem 126:108–113. doi:10.1016/J.MARCHEM.2011.04.004

    CAS  Article  Google Scholar 

  • Behra P, Genoni GP, Sigg L (1993) Grundlagenfür die Festlegung der QualitätszielefürMetalle in Fliessgewässern. Gas-Wasser-Abwasser 73:942–951

    CAS  Google Scholar 

  • Boisson JC, Perrodin Y (2006) Effects of road run-off in biomass and metabolic activity of periphyton in experimental streams. J Hazard Mater A132:148–154. doi:10.1016/j.jhazmat.2005.07.083

    Article  Google Scholar 

  • Budka M, Gabrys B, Ravagnan E (2010) Robust predictive modelling of water pollution using biomarker data. Water Res 44:3294–3308. doi:10.1016/J.WATRES.2010.03.006

    CAS  Article  Google Scholar 

  • Burba P, Rocha J, Klockow D (1994) Labile complexes of trace metals in aquatic humic substances: Investigation by means of an ion exchange-based flow procedure. Fresenius J. Anal Chem 349:800–807. doi:10.1007/BF00323109

    CAS  Article  Google Scholar 

  • Chau YK, Lum-Shue-Chan K (1974) Determination of labile and strongly bound metals in lake water. Water Res 8(6):383–388. doi:10.1016/0043-1354(74)90052-9

    CAS  Article  Google Scholar 

  • Cleven R, Nur Y, Krystek P, van den Berg G (2005) Monitoring speciation in the rivers Meuse and Rhine using DGT. Water Air Soil Poll 165:249–263

    CAS  Article  Google Scholar 

  • Conesa HM, Schulin R, Nowack B (2010) Sustainability of using diffusive gradients in thin films (DGT) to study metal bioavailability in mine tailings: possibilities and constraints. Environ SciPollut Res 17:657–664. doi:10.1007/s11356-009-0254-x

    CAS  Article  Google Scholar 

  • Davison W, Zhang H (1994) In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 367:545–548. doi:10.1007/s11270-005-5147-0

    Google Scholar 

  • De Silva S, Ball AS, Huynh T, Reichman SM (2016) Metal accumulation in roadside soil in Melbourne, Asutralia: effect of road age, traffic density and vehicular speed. Environ Pollut 208:102–109. doi:10.1016/j.envpol.2015.09.032

    Article  Google Scholar 

  • Deycard VN, Schäfer J, Blanc G, Coynel A, Petit JCJ, Lanceleur L, Dutruch L, Bossy C, Ventura A (2014) Mar Chem 167:123–134. doi:10.1016/j.marchem.2014.05.005

    CAS  Article  Google Scholar 

  • Dočekalová H, Diviš P (2005) Application of diffusive gradient in thin films technique (DGT) to measurement of mercury in aquatic systems. Talanta 65:1174–1178. doi:10.1016/J.TALANTA.2004.08.054

    Article  Google Scholar 

  • Fraga I, Charters FJ, O’Sullivan AS, Cochrane TA (2016) A novel modeling framework to prioritize estimation of non-point source pollution parameters for quantifying pollutant origin and discharge in urban catchments. J Environ Manage 161:75–84. doi:10.1016/j.jenvman.2015.11.003

    Article  Google Scholar 

  • Garnier J-M, Ciffroy P, Benyahya L (2006) Implication of short and long term (30 days) sorption on the desorption kinetic of trace metals (Cd, Zn, Co, Mn, Fe, Ag, Cs) associated with river suspended matter. Sci Total Environ 366:350–360. doi:10.1016/J.SCITOTENV.2005.07.015

    CAS  Article  Google Scholar 

  • Gasperi J, Zgheib S, Cladière M, Rocher V, Moilleron R, Chebbo G (2012) Priority pollutants in urban stormwater: Part 2—case of combined sewers. Water Res 46:6693–6703. doi:10.1016/J.WATRES.2011.09.041

    CAS  Article  Google Scholar 

  • Göbel P, Dierkes C, Coldewey WG (2007) Storm water runoff concentration matrix for urban areas. J Contam Hydrol 91:26–42. doi:10.1016/j.jconhyd.2006.08.008

    Article  Google Scholar 

  • Goonetilleke A, Thomas E, Ginn S, Gilbert D (2005) Understanding the role of land use in urban stormwater quality management. J Environ Manage 74:31–42. doi:10.1016/J.JENVMAN.2004.08.006

    CAS  Article  Google Scholar 

  • Gourlay-Francé C, Bressy A, Uher E, Lorgeoux C (2011) Labile, dissolved and particulate PAHs and trace metals in wastewater passive sampling, occurrence, partitioning in treatment plants. Water Sci Technol 63(7):1327–1333. doi:10.2166/wst.2011.05.127

    Article  Google Scholar 

  • Gregoire C, Elsaesser D, Huguenot D, Lange J, Lebeau T, Merli A, Mose R, Passeport E, Payraudeau S, SchÏtz T, Schulz R, Tapia-Padilla G, Tournebize J, Trevisan M, Wanko A (2008) Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environ Chem Lett. doi:10.1007/s10311-008-0167-9

    Google Scholar 

  • Han S, Naito W, Hanao Y, Masunaga S (2013) Evaluation of trace metals in Japanese river waters using DGT and a chemical equilibrium model. Water Res 47:4880–4892. doi:10.1016/J.WATRES.2013.05.025

    CAS  Article  Google Scholar 

  • Haselbach L, Poor C, Tilson J (2014) Dissolved zinc and copper retention from stormwater runoff in ordinary Portland cement pervious concrete. Constr Build Mater 53:652–657. doi:10.1016/j.conbuildmat.2013.12.013

    Article  Google Scholar 

  • Hurley SE, Forman RTT (2011) Stormwater ponds and biofilters for large urban sites: modeled arrangements that achieve the phosphorus reduction target for Boston’s Charles Rivers, USA. EcolEng 37:850–863. doi:10.1016/J.ECOLENG.2011.01.008

    Google Scholar 

  • Huston R, Chan YC, Chapman H, Gardner T, Shaw G (2011) Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia. Water Res 46:1121–1132. doi:10.1016/j.watres.2011.12.008

    Article  Google Scholar 

  • INERIS (2010) Données technico-économiques sur les substances chimiques en France : cuivre, composés et alliages, DRC-10-102861-01255A, 82 p. (http://rsde.ineris.fr/ ou http://www.ineris.fr/substances/fr/)

  • Karlik B, Szpakowska B (2001) Labile organic matter and heavy metals in waters of Agricultural Landscape. Pol J Environ Stud 10(2):85–88

    CAS  Google Scholar 

  • Kelly DG, Weir RD, White SD (2011) An investigation of roof run-off during rain events at the Royal Military College of Canada and potential discharge to Lake Ontario. J Environ Sci 23(7):1072–1078. doi:10.1016/S1001-0742(10)60552-9

    CAS  Article  Google Scholar 

  • Kim JH, Gibb HJ, Howe PD (2006) Cobalt and inorganic cobalt compounds. WHO. ISBN 92 4 153069 3

  • Kim G, Yur J, Kim J (2007) Diffuse pollution loading from urban stormwater run-off in Daejon city, Korea. J Environ Manage 85:9–16. doi:10.1016/j.jenvman.2006.07.009

    CAS  Article  Google Scholar 

  • Kiptoo JK, Ngila JC, Silavwe ND (2009) Evaluation of copper speciation in model solutions of humic acid by mini-columns packed with Chelex-100 and new chelating agents: Application to speciation of selected heavy metals in environmental water samples. J Hazard Mater 172:1163–1167. doi:10.1016/j.jhazmat.2009.07.119

    CAS  Article  Google Scholar 

  • Lewitus A, Brock LM, Burke MK, Demattio KA, Wilde SB (2008) Laggonalstormwater detention ponds as promoters of harmful alagal blooms and eutrophication along the South Carolina coast. Harmful Algae 8:60–65. doi:10.1016/j.hal.2008.08.012

    CAS  Article  Google Scholar 

  • Li W, Zhao H, Teasdale PR, Wang F (2005) Trace metal speciation measurements in waters by the liquid binding phase DGT device. Talanta 67:571–578. doi:10.1016/j.talanta.2005.03.018

    CAS  Article  Google Scholar 

  • Lye DJ (2009) Rooftop run-off as a source of contamination: a review. Sci Total Environ 407:5429–5434. doi:10.1016/j.scitotenv.2009.07.011

    CAS  Article  Google Scholar 

  • Magaud H, Migeon B, Morfin P, Garric J, Vindimian E (1997) Modelling fish mortality due to urban storm run-off: Interacting effects of hypoxia and un-ionized ammonia. Wat Res 31(2):211–218

    CAS  Article  Google Scholar 

  • Manahan SE (2004) Environmental Chemistry. 8th Ed:170 CRC Press LLC. ISBN 1-56670-633-5

  • Météo-France (2012) MétéoFrance.Annual Report.ISSN: 2112-5511

  • Miguntanna NS, Egodawatta P, Kokot S, Goonetilleke A (2010) Determination of a set of surrogate parameters to asses urban stormwater quality. Sci Total Environ 408:6251–6259. doi:10.1016/j.scitotenv.2010.09.015

    CAS  Article  Google Scholar 

  • Moilleron R, Gonzalez A, Chebbo G, Thévenot DR (2002) Determination of aliphatic hydrocarbons in urban run-off samples from the “Le Marais” experimental catchment in Paris centre. Water Res 36:1275–1285. doi:10.1016/S0043-1354(01)00322-0

    CAS  Article  Google Scholar 

  • Navrátil T, Minařík L (2002) Trace elements and contaminants, in Earth’s System: history and natural variability. In: Cílek V, Smith RH (eds) EOLSS-UNESCO. Eolss Publishers, Oxford

    Google Scholar 

  • Okonkwo JO, Mothiba M (2005) Physico-chemical characteristics and pollution levels of heavy metals in the rivers in Thohoyandou, South Africa. J Hydrol 308:122–127. doi:10.1016/j.jhydrol.2004.10.025

    CAS  Article  Google Scholar 

  • Parat C, Betelu S, Authier L, Potin-Gautier M (2006) Determination of labile trace metals with screen-printed electrode modified by a crown-ether based membrane. Anal Chim Acta 573–584:14–19. doi:10.1016/j.aca.2006.04.081

    Article  Google Scholar 

  • Peijnenburg WJGM, Jager T (2003) Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicol Environ Saf 56:63–77. doi:10.1016/S0147-6513(03)00051-4

    CAS  Article  Google Scholar 

  • Research DGT (2002) DGT-for measurements in water, soils and sediments. DGT Research Ltd., Lancaster

    Google Scholar 

  • Rodríguez Martin JA, De Arana C, Ramos-Miras JJ, Gil C, Boluda R (2015) Imapct of 70 years urban growth associated with heavy metal pollution. Environ Pollut 196:156–163. doi:10.1016/j.envpol.2014.10.014

    Article  Google Scholar 

  • Sandor Z, Csengeri I, Oncsik MB, Alexis MN, Zubcova E (2001) Trace metals in freshwater fish, sediment and water. Environ Scie Pollut Res 8(4):265–268. doi:10.1065/espr2001.08.075

    CAS  Article  Google Scholar 

  • Schintu M, Koussih L, Chevolot L, Amiard J-C, Robert J-M (1999) Monitoring of labile zinc in cultures of Skeletonema costatum using a salt groundwater. Ecotoxicol Environ Saf 42:207–211. doi:10.1006/eesa.1998.1746, Environmental Research, Section B. Article ID eesa.1998.1746

    CAS  Article  Google Scholar 

  • Schmitt N, Wanko A, Laurent J, Boi P, Molle P, Mosé R (2015) Constrcuted wetlands and treating stormwater from separate sewer networks in a residential Strasbourg urban catchment area: micropollutant removal and fate. JECE 167:75–84. doi:10.1016/j.jenvman.2015.11.003

    Google Scholar 

  • Schmukat A, Duester L, Ecker D, Heininger P, Ternes TA (2013) Determination of the long-term release of metal(oid)s from construction materials using DGTs. J Hazard Mater 260:725–732. doi:10.1016/J.JHAZMAT.2013.06.035

    CAS  Article  Google Scholar 

  • Sokolowski A, Wolowicz M, Hummel H (2001) Distribution of dissolved and labile particulate metals in the overlying bottom water in the Vistula River Plume (Southern Baltic Sea). Mar Pollut Bull 42(10):967–980. doi:10.1016/S0025-326X(01)00069-8

    CAS  Article  Google Scholar 

  • Somes NLG, Fabian J, Wong THF (2000) Tracking pollutant detention in constructed stormwater wetlands. Urban Water 2:29–37. doi:10.1016/S1462-0758(00)00037-6

    CAS  Article  Google Scholar 

  • Søndergaard J, Elberling B, Asmund G (2008) Metal speciation and bioavailability in acid mine drainage from a high Arctic coal mine waste rock pile: temporal variations assessed through high-resolution water sampling, geochemical modeling and DGT. Cold Reg SciTechnol 54:89–86. doi:10.1016/j.coldregions.2008.01.003

    Article  Google Scholar 

  • Stillings LL, Foster AL, Koski RA, Munk LA, Shanks WC III (2008) Temporal variation and the effect of rainfall on metals flux from the historic Beatson mine, Prince William Sound, Alaska, USA. Appl Geochem 23:255–278. doi:10.1016/J.APGEOCHEM.2007.10.013

    CAS  Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic Chemistry. Chemical Equilibria and rates in Natural Waters 3rd Ed. John Wiley & Sons, Inc. pp.669

  • Todeschini S, Papiri S, Ciaponi C (2012) Performance of stormwater detention tanks for urban drainage systems in northern Italy. J Environ Manage 101:33–45. doi:10.1016/j.jenvman.2012.02.003

    Article  Google Scholar 

  • Trenouth WR, Gharabaghi B (2015) Soil amendments for heavy metals removal from storm water runoff discharging to environmentally sensitive areas. J Hydrol 529:1478–1487. doi:10.1016/j.jhydrol.2015.08.034

    CAS  Article  Google Scholar 

  • vanLoon GW, Duffy SJ (2000) Environmental Chemistry. A global perspectives. Oxford University Press pp. 471-474 ISBN 0 19 856440 6 (Pbk)

  • Villanueva JD (2013) Suivi par capteurs passifs des polluants émergents dans les eaux de surface en contexte urbain (Monitoring emergingpollutants in surface waters using in situ samplingdevices in an urbancontext), Ph. D. thesis, Université Bordeaux, France

  • Villanueva JD, Le Coustumer P, Huneau F, Motelica-Heino M, Perez TR, Materum R, Espaldon MVO, Stoll S (2013) Assessment of trace metals during episodic events using DGT passive sampler: a proposal for water management enhancement. Water ResourManag 27(12):4163–4181. doi:10.1007/s11269-013-0401-5

    Google Scholar 

  • Villanueva JD, Le Coustumer P, Denis A, Abuyan R, Huneau F, Motelica-Heino M, Peyraube N, Celle-Jeanton H, Perez TR, Espaldon MVO (2015) Trend of labile trace metals in tropical urban water under highly contrasted weather conditions. Environ Sci Pollut Res. doi:10.1007/s11356-015-4835-6

    Google Scholar 

  • Wong CSC, Li X, Thornton I (2006) Urban environmental geochemistry of trace elements. Review. Environ Pollut 142:1–16. doi:10.1016/j.envpol.2005.09.004

    CAS  Article  Google Scholar 

  • World Health Organization (2005) Nickel in Drinking Water. Guidelines for drinking-water quality. Geneva. WHO/SDE/WSH/05.08/55

  • World Health Organization (2008) Guidelines for drinking-water quality. Vol. 1 3rd Ed., ISBN 978 92 4 154761 1

  • Wu Z, He M, Lin C (2011) In situ measurements of concentrations of Cd, Co, Fe and Mn in estuarine porewater using DGT. Environ Pollut 159:1123–1128. doi:10.1016/J.ENVPOL.2011.02.015

    CAS  Article  Google Scholar 

  • Wu Z, Wang S, Jiao L (2015) Geochemical behavior of metals-sulfide-phosphorus at SWI (sediment/water interface) assessed by DGT (Diffusive gradients in thin films) probes. J Geochem Explor. doi:10.1016/J.GEXPLO.2015.05.005

    Google Scholar 

  • Yuan Y, Hall K, Oldham C (2001) A preliminary model for predicting heavy metal contamination loading from an urban catchment. Sci Total Environ 266:299–307. doi:10.1016/S0048-9697(00)00728-2

    CAS  Article  Google Scholar 

  • Zgheib S, Moilleron R, Saad M, Chebbo G (2011) Partition of pollution between dissolved and particulate phases: what about emerging substances in urban storm water catchments? Water Res 45:913–925. doi:10.1016/J.WATRES.2010.09.032

    CAS  Article  Google Scholar 

  • Zhang H, Wang Z, Zhang Y, Ding M, Li L (2015) Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils among the Qinghai-Tibet highway. Sci Total Environ 521-522:169–172. doi:10.1016/j.scitotenv.2015.03.054

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Lyonnaise des Eaux Company, Bordeaux, France. The authors are also grateful to the European Union ERASMUS MUNDUS External Cooperation Window (ECW) Lot 12/13 and the Bourse Eiffel Excellence (Programme 2012-2013) from the French Ministry of Foreign Affairs for providing the academic grant. The authors would like to acknowledge the valuable efforts of Dr. Rasool Mehdizadeh and Dr. Maxime Fontan, for the administrative and field assistance of Mr. Romain Thiennot, and technical inputs of Dr. Céline Becouze-Lareure and Prof. Jörg Schäfer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Le Coustumer.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Villanueva, J.D., Granger, D., Binet, G. et al. Labile trace metal contribution of the runoff collector to a semi-urban river. Environ Sci Pollut Res 23, 11298–11311 (2016). https://doi.org/10.1007/s11356-016-6322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6322-0

Keywords

  • Labile trace metals
  • Stormwater and runoff collector
  • Trace metal mass fluxes
  • Jalle river
  • DGT
  • Precipitation
  • Water flow