Skip to main content

Advertisement

Log in

Effects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Commercial production of nanoparticles (NP) has created a need for research to support regulation of nanotechnology. In the current study, microbial biofilm communities were developed in rotating annular reactors during continuous exposure to 500 μg L−1 of each nanomaterial and subjected to multimetric analyses. Scanning transmission X-ray spectromicroscopy (STXM) was used to detect and estimate the presence of the carbon nanomaterials in the biofilm communities. Microscopy observations indicated that the communities were visibly different in appearance with changes in abundance of filamentous cyanobacteria in particular. Microscale analyses indicated that fullerene (C60) did not significantly (p < 0.05) impact algal, cyanobacterial or bacterial biomass. In contrast, MWCNT exposure resulted in a significant decline in algal and bacteria biomass. Interestingly, the presence of SWCNT products increased algal biomass, significantly in the case of SWCNT-COOH (p < 0.05) but had no significant impact on cyanobacterial or bacterial biomass. Thymidine incorporation indicated that bacterial production was significantly reduced (p < 0.05) by all nanomaterials with the exception of fullerene. Biolog assessment of carbon utilization revealed few significant effects with the exception of the utilization of carboxylic acids. PCA and ANOSIM analyses of denaturing gradient gel electrophoresis (DGGE) results indicated that the bacterial communities exposed to fullerene were not different from the control, the MWCNT and SWNT-OH differed from the control but not each other, whereas the SWCNT and SWCNT-COOH both differed from all other treatments and were significantly different from the control (p < 0.05). Fluorescent lectin binding analyses also indicated significant (p < 0.05) changes in the nature and quantities of exopolymer consistent with changes in microbial community structure during exposure to all nanomaterials. Enumeration of protozoan grazers showed declines in communities exposed to fullerene or MWCNT but a trend for increases in all SWCNT exposures. Observations indicated that at 500 μg L−1, carbon nanomaterials significantly alter aspects of microbial community structure and function supporting the need for further evaluation of their effects in aquatic habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. Carbon Nanotubes 80:391–425

    Article  CAS  Google Scholar 

  • Ajayan PM, Charlier JC, Rinzler AG (1999) Carbon nanotubes: from macromolecules to nanotechnology. Proc Natl Acad Sci U S A 96:14199–14200

    Article  CAS  Google Scholar 

  • Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S (2009) Synthesis of titania/carbon nanotubes heterojunction arrays for photoinactivation of E. coli in visible light irradiation. Carbon 47:3280–3287

    Article  CAS  Google Scholar 

  • Apul OG, Shao T, Zhang S, Karanfil T (2012) Impact of carbon nanotube morphology on phenanthrene adsorption. Environ Toxicol Chem 31(1):73–78

    Article  CAS  Google Scholar 

  • Arias LR, Yang L (2009) Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25(5):3003–3012. doi:10.1021/la802769m

  • Ball P (2001) Roll up for the revolution. Nature 414:142–144

    Article  CAS  Google Scholar 

  • Battin TJ, Kammer FVD, Weilhartner A, Ottofuelling S, Hofmann T (2009) Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol 43:8098–8104

    Article  CAS  Google Scholar 

  • Bennett SW, Adeleye A, Ji Z, Keller AA (2013) Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes. Water Res 47:4074–4085. doi:10.1016/j.watres.2012.12.039

    Article  CAS  Google Scholar 

  • Boon N, Windt WD, Verstraete W, Top EM (2002) Evaluation of nested PCR DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol Ecol 39:101–112

    CAS  Google Scholar 

  • Boxall ABA, Chaudhry Q, Sinclair C, Jones A, Aitken R, Jefferson B, Watts C (2007) Current and future predicted environmental exposure to engineered nanoparticles; central science laboratory, department of the environment and rural affairs: London, UK

  • Chae So-R, Hotze EM, Xiao Y, Rose J, Wiesner MR (2010) Comparison of methods for fullerene detection and measurements of reactive oxygen production in cosmetic products. Environ Eng Sci 27:797–804. doi:10.1089/ees.2010.0103

  • Chan TS, Nasser F, St-Denis CH, Mandal HS, Ghafari P, Hadjout-Rabi N, Bols CN, Tang XS (2013) Carbon nanotube compared with carbon black: effects on bacterial survival against grazing by ciliates and antimicrobial treatments. Nanotoxicology 7:251–258

    Article  CAS  Google Scholar 

  • Chen Q, Saltiel C, Manickavasagam S, Schadler LS, Siegel RW, Yang HC (2004) Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension. J Colloid Interface Sci 280:91–97

    Article  CAS  Google Scholar 

  • Chenier MR, Beaumier D, Roy R, Driscoll BT, Lawrence JR, Greer CW (2003) Impact of seasonal variations and nutrient inputs on the cycling of nitrogen and the degradation of hexadecane by replicated river biofilms. Appl Environ Microbiol 69:5170–5177

  • Chung H, Son Y, Yoon TK, Kim S, Kim W (2011) The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf 74:569–575

    Article  CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77:3–5

    Article  CAS  Google Scholar 

  • Dynes JJ, Lawrence JR, Korber DR, Swerhone GDW, Leppard GG, Hitchcock AP (2006a) Quantitative mapping of chlorhexidine in natural river biofilms. Sci Total Environ 369:369–383

    Article  CAS  Google Scholar 

  • Dynes JJ, Tyliszczak T, Araki T, Lawrence JR, Swerhone GDW, Leppard GG, Hitchcock AP (2006b) Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy. Environ Sci Technol 40:1556–1565

    Article  CAS  Google Scholar 

  • Fang JS, Lyon DY, Wiesner MR, Dong JP, Alvarez PJJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41:2636

    Article  CAS  Google Scholar 

  • Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL, Hughes JB (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39:4307–4316

    Article  CAS  Google Scholar 

  • Ghafari P, St-Denis CH, Power ME, Jin X, Tsou V, Mandal HS, Bols NC, Tang XS (2008) Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol 3:347–351

    Article  CAS  Google Scholar 

  • Glucksman E, Bell T, Griffiths RI, Bass D (2010) Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol 12:3105–3113. doi:10.1111/j.1462-2920.2010.02283.x

    Article  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2010) Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ Toxicol Chem 29:1036–1048

    CAS  Google Scholar 

  • Goyal D, Zhang XJ, Rooney-Varga JN (2010) Impacts of single-walled carbon nanotubes on microbial community structure in activated sludge. Lett Appl Microbiol 51:428–435

  • Haak SK, McFeters GA (1982a) Nutritional relationships among microorganisms in an epilithic biofilm community. Microb Ecol 8:115–126

    Article  Google Scholar 

  • Haak SK, McFeters GA (1982b) Microbial dynamics of an epilithic mat community in a high alpine stream. Appl Environ Microbiol 43:702–707

    Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325

  • Hitchcock AP (2012) Soft X-ray imaging and spectromicroscopy chapter 22 in volume II of the handbook on nanoscopy, eds. Gustaaf Van Tendeloo, Dirk Van Dyck and Stephen J. Pennycook (Wiley, 2012) pp 745–791

  • Hitchcock AP (2014) aXis2000 is written in Interactive Data Language (IDL). It is available free for non-commercial use from http://unicorn.mcmaster.ca/aXis2000.html

  • Hyung H, Fortner JD, Hughes JB, Kim J-H (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184

    Article  CAS  Google Scholar 

  • Jackson P, Jacobsen NR, Baun A, Birkedal R, Kuhnel D, Jensen KA, Vogel U, Wallin H (2013) Bioaccumulation and ecotoxicity of carbon Nanotubes. Chemistry Central J 7:154 http://journal.chemistrycentral.com/content/7/1/154

  • Jacobsen C, Wirick S, Flynn G, Zimba C (2000) Soft X-ray microscopy from image sequences with sub-100 nm spatial resolution. J Microsc 197:173–184

    Article  CAS  Google Scholar 

  • Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  CAS  Google Scholar 

  • Jones CG, Lawton JH, Shackak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Article  CAS  Google Scholar 

  • Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24:6409–6413

    Article  CAS  Google Scholar 

  • Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43:2648–2653

    Article  CAS  Google Scholar 

  • Kaznatcheev KV, Karunakaran C, Lanke UD, Urquhart SG, Obst M, Hitchcock AP (2007) Soft X-ray spectromicroscopy beamline at the CLS: commissioning results. Nucl Instrum Methods Phys Res Sect A 582:96–99

    Article  CAS  Google Scholar 

  • Kohler AR, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16(8–9):927–937

  • Lawrence JR, Swerhone GDW, Neu TR (2000) Design and evaluation of a simple rotating annular reactor for replicated biofilm studies. J Microbiol Methods 42:215–224

    Article  CAS  Google Scholar 

  • Lawrence JR, Scharf B, Packroff G, Neu TR (2002) Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microb Ecol 44:199–207

    Article  CAS  Google Scholar 

  • Lawrence JR, Chenier M, Roy R, Beaumier D, Fortin N, Swerhone GDW, Neu TR, Greer CW (2004) Microscale and molecular assessment of the impacts of nickel, nutrients and oxygen level on river biofilm communities. Appl Environ Microbiol 70:4326–4339

    Article  CAS  Google Scholar 

  • Lawrence JR, Swerhone GDW, Wassenaar LI, Neu TR (2005) Effects of selected pharmaceuticals on riverine biofilm communities. Can J Microbiol 51:655–669

    Article  CAS  Google Scholar 

  • Lawrence JR, Zhu B, Swerhone GDW, Roy J, Wassenaar LI, Topp E, Korber DR (2009) Comparative microscale analysis of the effects of triclosan and triclocarban on the structure and function of river biofilm communities. Sci Total Environ 407:3307–3316

    Article  CAS  Google Scholar 

  • Lawrence JR, Dynes JJ, Korber DR, Swerhone GDW, Leppard GG, Hitchcock AP (2012) Monitoring the fate of copper nanoparticles in river biofilms using scanning transmission X-ray microscopy (STXM). Chem Geol 329:18–25

    Article  CAS  Google Scholar 

  • Lawrence JR, Swerhone GDW, Dynes JJ, Hitchcock AP, Korber DR (2016) Complex organic corona formation on carbon nanotubes reduces microbial toxicity by suppressing reactive oxygen species production. Environ Sci Nano. doi:10.1039/C5EN00229J

    Google Scholar 

  • Lee BI, Qi L, Copeland T (2005) Nanoparticles for materials design: present and future. J Ceram Process Res 6:31–40

    Google Scholar 

  • Liu Y, Li J, Qiu X, Burda C (2007) Bactericidal activity of nitrogen doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS). J Photochem Photobiol A 190(1):94–100

    Article  CAS  Google Scholar 

  • Long Z, Ji J, Yang K, Lin D, Wu F (2012) Systematic and quantitative investigation of the mechanism of carbon nanotubes' toxicity toward algae. Environ Sci Technol 46:8458–8466

    Article  CAS  Google Scholar 

  • Lovern SB, Strickler JR, Klaper R (2007) Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environ Sci Technol 41:4465–4470

    Article  CAS  Google Scholar 

  • Luongo LA, Zhang XJ (2010) Toxicity of carbon nanotubes to the activated sludge process. J Hazard Mater 178:356–362

    Article  CAS  Google Scholar 

  • Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40:4360–4366. doi:10.1021/es0603655

    Article  CAS  Google Scholar 

  • Lyon DY, Brunet L, Hinkal GW, Wiesner MR, Alvarez PJJ (2008) Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett 8:1539

    Article  CAS  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  • Musee N, Thwala M, Nota N (2011) The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 13:1164–1183

    Article  CAS  Google Scholar 

  • Muyzer G, Ramsing NB (1995) Molecular methods to study the organization of microbial communities. Water Sci Technol 32:1–9

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Neal A (2008) What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17(5):362–371

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Neu TR, Swerhone GDW, Lawrence JR (2001) Assessment of lectin-binding-analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology 147:299–313

    Article  CAS  Google Scholar 

  • Nyberg L, Turco RF, Nies L (2008) Assessing the impact of nanomaterials on anaerobic microbial communities. Environ Sci Technol 42:1938–1943

    Article  CAS  Google Scholar 

  • Parry JD (2004) Protozoan grazing of freshwater biofilms. Adv Appl Microbiol 54:167–196

    Article  Google Scholar 

  • Petersen EJ, Zhang L, Mattison NT, O’Carroll DM, Whelton AJ, Uddin N, Nguyen T, Huang Q, Henry TB, Holbrook RD, Chen KL (2011) Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol 45:9837–9856

    Article  CAS  Google Scholar 

  • Rodrigues DF, Elimelech M (2010) Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm. Environ Sci Technol 44(12):4583–4589. doi:10.1021/es1005785

  • Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, Knauer K (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45:6136–6144

    Article  CAS  Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    Article  CAS  Google Scholar 

  • Tong ZH, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C-60) on a soil microbial community. Environ Sci Technol 41:2985–2991

    Article  CAS  Google Scholar 

  • Tong Z, Bischoff M, Nies LF, Myerm P, Applegate B, Turco RF (2012) Response of soil microorganisms to as-produced and functionalized single-wall carbon nanotubes (SWNTs). Environ Sci Technol 46:13471–13479. doi:10.1021/es303251r

    Article  CAS  Google Scholar 

  • Velzeboer I, Hendriks AJ, Ragas AMJ, Van de Meent D (2008) Aquatic ecotoxicity tests of some nanomaterials. Environ Toxicol Chem 27:1942–1947

    Article  CAS  Google Scholar 

  • Velzeboer I, Kupryianchyk D, Peeters ETHM, Koelmans AA (2011) Community effects of carbon nanotubes in aquatic sediments. Environ Int 37:1126–1130

    Article  CAS  Google Scholar 

  • Velzeboer I, Peeters ETHM, Koelmans AA (2013) Multiwalled carbon nanotubes at environmentally relevant concentrations affect the composition of benthic communities. Environ Sci Technol 47:7475–7482. doi:10.1021/es400777j

    CAS  Google Scholar 

  • Weerman E, Van der Geest HG, Van der Meulen MD, Manders EMM, Van de Koppel J, Herman PMJ, Admiraal W (2011) Ciliates as engineers of phototrophic biofilms. Freshw Biol 56:1358–1369

    Article  Google Scholar 

  • Wei LP, Thakkar M, Chen YH, Ntim SA, Mitra S, Zhang XY (2010) Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta. Aquat Toxicol 100:194–201

    Article  CAS  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Headley JV, Robarts RD, Caldwell DE (1994) Microbial exopolymers provide a mechanism for bioaccumulation of contaminants. Microb Ecol 27:279–291

    Article  CAS  Google Scholar 

  • Yang C, Mamouni J, Tang Y, Yang L (2010) Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26:16013–16019

    Article  CAS  Google Scholar 

  • Yin Y, Zhang X, Graham J, Luongo L (2009) Examination of purified single-walled carbon nanotubes on activated sludge process using batch reactors. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:661–665

  • Zhu Y, Zhao Q, Li Y, Cai X, Li W (2006) The interaction and toxicity of multiwalled carbon nanotubes with Stylonychia mytilus. J Nanosci Nanotechnol 6:1357–1364

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded through Environment Canada’s Chemicals Management Plan. The Canadian Light Source (CLS) is supported by the Natural Sciences and Engineering Research Council of Canada, the National Research Council of Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada and the University of Saskatchewan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Lawrence.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawrence, J.R., Waiser, M.J., Swerhone, G.D.W. et al. Effects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities. Environ Sci Pollut Res 23, 10090–10102 (2016). https://doi.org/10.1007/s11356-016-6244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6244-x

Keywords