Skip to main content

Advertisement

Log in

Enhanced photochemical decomposition of environmentally persistent perfluorooctanoate by coexisting ferric ion and oxalate

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Perfluorooctanoic acid (PFOA), an environmentally persistent pollutant, was found to be quickly decomposed under 254 nm UV irradiation in the presence of ferric ion and oxalic acid. To understand the PFOA decomposition mechanism by this process, the effects of reaction atmosphere and concentrations of ferric ions and oxalic acids on PFOA decomposition were investigated, as well as decomposition intermediates. PFOA mainly decomposes via two pathways: (i) photochemical oxidation via Fe(III)-PFOA complexes and (ii) one-electron reduction caused by carboxylate anion radical (CO2 •−), which was generated by photolysis of ferrioxalate complexes. Under excess oxalic acid, PFOA decomposition was accelerated, and its corresponding half-life was shortened from 114 to 34 min as ferric concentration increased from 7 to 80 μM. Besides fluoride ions, six shorter chain perfluorinated carboxylic acids (PFCAs) bearing C2-C7 were identified as main intermediates. The presence of O2 promoted the redox recycling of Fe3+/Fe2+ and thus avoided the exhaustion of the Fe(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Balmer ME, Sulzberger B (1999) Atrazine degradation in irradiated iron oxalate systems: effects of pH and oxalate. Environ Sci Technol 33:2418–2424

    Article  CAS  Google Scholar 

  • Barbeau K (2006) Photochemistry of organic iron(III) complexing ligands in oceanic systems. Photochem Photobio 82:1505–1516

    Article  CAS  Google Scholar 

  • Cheng J, Liang X, Yang S, Hu Y (2014) Photochemical defluorination of aqueous perfluorooctanoic acid (PFOA) by VUV/Fe3+ system. Chem Engin J 239:242–249

    Article  CAS  Google Scholar 

  • Dai JY, Li M, Jin Y, Saito N, Xu M, Wei F (2006) Perfluorooctanesulfonate and perfluorooctanoate in red panda and giant panda from China. Environ Sci Technol 40:5647–5652

    Article  CAS  Google Scholar 

  • Deng NS, Zhang Z, Wu F, Luo F (2001) Photoinduced decolorization of dye solutions in the ferrioxalate/H2O2 system. Fresen Environ Bull 10:638–641

    CAS  Google Scholar 

  • Faust BC, Zepp RG (1993) Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environ Sci Technol 27:2517–2522

    Article  CAS  Google Scholar 

  • Flynn CM Jr (1984) Hydrolysis of inorganic iron (III) salts. Chem Rev 84:31–41

    Article  CAS  Google Scholar 

  • Giri R, Ozaki H, Morigaki T, Taniguchi S, Takanami R (2011) UV photolysis of perfluorooctanoic acid (PFOA) in dilute aqueous solution. Water Sci Technol 63:276–282

    Article  CAS  Google Scholar 

  • Higgins CP, Field JA, Criddle CS, Luthy RG (2005) Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environ Sci Technol 39:3946–3956

    Article  CAS  Google Scholar 

  • Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S (2005) Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ Sci Technol 39:2383–2388

    Article  CAS  Google Scholar 

  • Hori H, Yamamoto A, Koike K, Kutsuna S, Osaka I, Arakawa R (2007) Photochemical decomposition of environmentally persistent short-chain perfluorocarboxylic acids in water mediated by iron(II)/(III) redox reactions. Chemosphere 68:572–578

    Article  CAS  Google Scholar 

  • Huang L, Dong WB, Hou HQ (2007) Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis. Chem Phys Lett 436:124–128

    Article  CAS  Google Scholar 

  • Huston PL, Pignatello JJ (1996) Reduction of perchloroalkanes by ferrioxalate-generated carboxylate radical preceding mineralization by the photo-fenton reaction. Environ Sci Technol 30:3457–3463

    Article  CAS  Google Scholar 

  • Kim SK, Kannan K (2007) Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes. Environ Sci Technol 41:8328–8334

    Article  CAS  Google Scholar 

  • Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394

    Article  CAS  Google Scholar 

  • Lee YC, Lo S, Chiueh PT, Chang DG (2009) Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Res 43:2811–2816

    Article  CAS  Google Scholar 

  • Li X, Zhang P, Jin L, Shao T, Li Z, Cao J (2012) Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism. Environ Sci Technol 46:5528-5534.

  • Li ZM, Zhang PY, Shao T, Li XY (2012b) In2O3 nanoporous nanosphere: a highly efficient photocatalyst for decomposition of perfluorooctanoic acid. App Catal B Environ 125:350–357

    Article  CAS  Google Scholar 

  • Martin JW, Mabury SA, Solomon KR, Muir DCG (2003) Dietary accumulation of perfluorinated acids in juvenile rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 22:189–195

    Article  CAS  Google Scholar 

  • Mulazzani QG, D’Angelantonio M, Venturi M, Hoffman MZ, Rodgers MAJ (1986) Interaction of formate and oxalate ions with radiation-generated radicals in aqueous solution. methylviologen as a mechanistic probe. J Phys Chem 90:5347–5352

    Article  CAS  Google Scholar 

  • Olsen GW, Hansen KJ, Stevenson LA, Burris JM, Mandel JH (2003) Human donor liver and serum concentrations of perfluorooctanesulfonate and other perfluorochemicals. Environ Sci Technol 37:888–891

    Article  CAS  Google Scholar 

  • Panchangam SC, Lin AY, Tsai JH, Lin CF (2009) Sonication-assisted photocatalytic decomposition of perfluorooctanoic acid. Chemosphere 75:654–660

    Article  CAS  Google Scholar 

  • Park H, Vecitis CD, Cheng J, Choi W, Mader BT, Hoffmann MR (2009) Reductive defluorination of aqueous perfluorinated alkyl surfactants: effects of ionic headgroup and chain length. J Phys Chem A 113:690–696

    Article  CAS  Google Scholar 

  • Phan Thi L, Do HT, Lee YC, Lo SL (2013) Photochemical decomposition of perfluorooctanoic acids in aqueous carbonate solution with UV irradiation. Chem Engin J 221:258–263

    Article  CAS  Google Scholar 

  • Qu Y, Zhang CJ, Li F, Chen J, Zhou Q (2010) Photo-reductive defluorination of perfluorooctanoic acid in water. Water Res 44:2939–2947

    Article  CAS  Google Scholar 

  • Renner R (2006) The long and the short of perfluorinated replacements. Environ Sci Technol 40:12–13

    Article  Google Scholar 

  • Schröder HF, Meesters RJW (2005) Stability of fluorinated surfactants in advanced oxidation processes—a follow up of degradation products using flow injection–mass spectrometry, liquid chromatography–mass spectrometry and liquid chromatography–multiple stage mass spectrometry. J Chromatogr A 1082:110–119

    Article  Google Scholar 

  • Schultz MM, Higgins CP, Huset CA, Luthy RG, Barofsky DF, Field JA (2006) Fluorochemical mass flows in a municipal wastewater treatment facility. Environ Sci Technol 40:7350–7357

    Article  CAS  Google Scholar 

  • Schwarz HA, Dodson RW (1989) Reduction potentials of CO2 and the alcohol radicals. J Phys Chem 93:409–414

    Article  CAS  Google Scholar 

  • Shao T, Zhang PY, Jin L, Li ZM (2013) Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water b nanostructured gallium oxide. App Catal B Environ 142–143:654–661

    Article  Google Scholar 

  • Shoeib M, Harner T, Vlahos P (2006) Perfluorinated chemicals in the Arctic atmosphere. Environ Sci Technol 40:7577–7583

    Article  CAS  Google Scholar 

  • Strynar MJ, Lindstrom AB (2008) Perfluorinated compounds in house dust from Ohio and North Carolina, USA. Environ Sci Technol 42:3751–3756

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry-chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York

    Google Scholar 

  • Surdhar PS, Mezyk ST, Armstrong DA (1989) Reduction potential of the carboxyl radical anion in aqueous solutions. J Phys Chem 93:3360–3363

    Article  CAS  Google Scholar 

  • Szulbinski WS (2000) ESR and resonance Raman spectroscopic studies of peroxide intermediates derived from iron diazaoxacyclononane. Spectrochim Acta A 56:2117–2124

    Article  Google Scholar 

  • Tao L, Ma J, Kunisue T, Libelo EL, Tanabe S, Kannan K (2008) Perfluorinated compounds in human breast milk from several Asian countries, and in infant formula and dairy milk from the United States. Environ Sci Technol 42:8597–8602

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2003) Office of Pollution Prevention and Toxics Risk Assessment Division. Preliminary risk assessment of the developmental toxicity associated with exposure to perfluorooctanoic acid and its salts. April 10, 2003. 2. SAB Draft Report dated 1/20/06

  • U.S. Environmental Protection Agency (2010/15) PFOA Stewardship Program. http://www.epa.gov/oppt/pfoa/pfoastewardship.htm (accessed May 2006)

  • Vecitis CD, Park H, Cheng J, Mader BT, Hoffmann MR (2008) Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products. J Phys Chem A 112:4261–4270

    Article  CAS  Google Scholar 

  • Vecitis CD, Park H, Cheng J, Mader BT, Hoffmann MR (2009) Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Front Environ Sci Engin China 3:129–151

    Article  CAS  Google Scholar 

  • Wang Y, Zhang PY (2011) Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid. J Hazard Mater 192:1869–1875

    Article  CAS  Google Scholar 

  • Wang Y, Zhang PY, Pan G, Chen H (2008) Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254nm UV light. J Hazard Mater 160:181–186

    Article  CAS  Google Scholar 

  • Wu F, Deng NS, Zuo YG (1999) Discoloration of dye solutions induced by solar photolysis of ferrioxalate in aqueous solutions. Chemosphere 39:2079–2085

    Article  CAS  Google Scholar 

  • Zepp RG, Faust BC, Hoigne J (1992) Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction. Environ Sci Technol 26:313–319

    Article  CAS  Google Scholar 

  • Zhuo QF, Deng SB, Yang B, Huang J, Yu G (2011) Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode. Environ Sci Technol 45:2973–2979

    Article  CAS  Google Scholar 

  • Zuo YG, Holgné J (1992) Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron (III)-oxalate complexes. Environ Sci Technol 26:1014–1022

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Natural Science Foundation of China (21267006, 21221004, 21411140032), National Basic Research Program of China (2013CB632403), Natural Science Foundation of Guizhou Province of China (20112066), and Tsinghua University Initiative Scientific Research Program (20131089251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengyi Zhang.

Additional information

Responsible editor: Santiago V. Luis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, P. Enhanced photochemical decomposition of environmentally persistent perfluorooctanoate by coexisting ferric ion and oxalate. Environ Sci Pollut Res 23, 9660–9668 (2016). https://doi.org/10.1007/s11356-016-6205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6205-4

Keywords

Navigation