Skip to main content
Log in

Biodegradation of a commercial mixture of the herbicides atrazine and S-metolachlor in a multi-channel packed biofilm reactor

  • 4th International Symposium on Environmental Biotechnology and Engineering-2014
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2016

This article has been updated

Abstract

Atrazine and S-metolachlor are two of the most widely used herbicides for agricultural purposes; consequently, residues of both compounds and their metabolites had been detected in ground and superficial waters. Unlike atrazine, the complete degradation of metolachlor has not been achieved. Hence, the purpose of this research is to study the biodegradation of a commercial mixture of atrazine and S-metolachlor in a prototype of a multi-channel packed-bed-biofilm reactor (MC-PBR) designed with the aim of solving the problems of pressure drop and oxygen transfer, typically found on this type of bioreactors.

Because the removal efficiency of the herbicides was increased when Candida tropicalis was added to the original microbial community isolated, the reactor was inoculated with this enriched community. The operational conditions tested in batch and continuous mode did not affect the removal efficiency of atrazine; however, this was not the case for S-metolachlor. The removal rates and efficiencies showed a notable variation along the MC-PBR operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 01 April 2016

    An erratum to this article has been published.

References

  • Abou-Waly H, Abou-Setta MM, Nigg HN, Mallory L (1991) Dose–response relationship of Anabaena flos-aquae and Selenastrum capricornutum to atrazine and hexazinone using chlorophyll a content and 14C uptake. Aquat Toxicol 20:195–204. doi:10.1016/0166-445X(91)90016-3

    Article  CAS  Google Scholar 

  • Aksu Z, Donmez G (2003) A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye. Chemosphere 50: 1075–1083. doi:10.1016/S0045-6535(02)00623-9

  • Behki R, Topp E, Dick W, Germon P (1993) Metabolism of the herbicide atrazine by Rhodococcus strains. Appl Environ Microbiol 59:1955–1959. doi:10.1007/s11356-013-2151-6

    CAS  Google Scholar 

  • Calis HPA, Nijenhuis J, Paikert BC, Dautzenberg FM, van den Bleek CM (2001) CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing. Chem Eng Sci 56(4):1713–1720. doi:10.1016/S0009-2509(00)00400-0

    Article  CAS  Google Scholar 

  • Cavalcante AHM, Carvalho LB Jr, Carneiro-da-Cunha MG (2006) Cellulosic exopolysaccharide produced by Zoogloea sp. as a film support for trypsin immobilisation. Biochem Eng J 29:258–261. doi:10.1016/j.bej.2006.01.005

    Article  CAS  Google Scholar 

  • Chen K, Lin Y, Chen W, Liu Y (2002) Degradation of phenol by PAA-immobilized Candida tropicalis. Enzyme Microb Tech 31:490–497. doi:10.1016/S0141-0229(02)00148-5

    Article  CAS  Google Scholar 

  • Chirnside A, Ritter W, Radosevich M (2009) Biodegradation of aged residues of atrazine and alachlor in a mix-load site soil. Soil Biol Biochem 41:2484–2492. doi:10.1155/2011/658569

    Article  CAS  Google Scholar 

  • Christopher SV, Bird KT (1992) The effects of herbicides on the development of Myriophyllum spicatum L. cultured in vitro. J Environ Qual 21:203–207. doi:10.2134/jeq1992.00472425002100020008x

    Article  CAS  Google Scholar 

  • Davies PE, Cook LSJ, Barton JL (1994) Triazine herbicide contamination of Tasmanian streams: sources, concentrations, and effects on biota. Aust J Mar Freshwater Res 45:209–226. doi:10.1071/MF9940209

    Article  CAS  Google Scholar 

  • De Los CD, Santoyo F, Juárez C, Ruiz N, Galíndez CJJ (2006) Cometabolic degradation of chlorophenols by a strain of Burkholderia in fed-batch culture. Enzyme Microbiol Technol 40:57–60. doi:10.1016/j.enzmictec.2005.10.038

    Article  Google Scholar 

  • Detenbeck NE, Hermanutz R, Allen K, Swift MC (1996) Fate and effects of the herbicide atrazine in flow-through wetland mesocosms. Environ Toxicol Chem 15(6):937–946. doi:10.1002/etc.5620150616

    Article  CAS  Google Scholar 

  • Dewey SL (1986) Effects of the herbicide atrazine on aquatic insect community structure and emergence. Ecology 67(1):148–162. doi:10.2307/1938513

    Article  CAS  Google Scholar 

  • El Sebai T, Devers-Lamrani M, Changey F, Rouard N, Martin-Laurent F (2011) Evidence of atrazine mineralization in a soil from the Nile Delta: Isolation of Arthrobacter sp. TES6, an atrazine-degrading strain. Int Biodeterior Biodegrad 65:1249–1255. doi:10.1016/j.ibiod.2011.05.011

    Article  Google Scholar 

  • Ergun S, Orning AA (1949) Fluid flow through randomly packed columns and fluidized beds. Ind EngChem 41(6):1179–1184. doi:10.1021/ie50474a011

    Article  CAS  Google Scholar 

  • Ettayebi K, Errachid F, Jamai L, Tahri-Jouti M, Sendide K, Ettayebi M (2003) Biodegradation of polyphenols with immobilized Candida tropicalis under metabolic induction. FEMS Microbiol Lett 223:215–219. doi:10.1016/S0378-1097(03)00380-X

    Article  CAS  Google Scholar 

  • Galíndez-Mayer J, Ramón-Gallegos J, Ruiz-Ordaz N, Juárez-Ramírez C, Salmerón-Alcocer A, Poggi-Varaldo HM (2008) Phenol and 4-chlorophenol biodegradation by yeast Candida tropicalis in a fluidized bed reactor. Biochem Eng J 38:147–157. doi: 10.1016/j.bej.2007.06.011

  • Galíndez-Nájera SP, Ramos O, Ruiz N, Salmerón A, Juárez C, Ahuatzi C, Curiel E, Galíndez J (2011) Simultaneous degradation of atrazine and simazine by a binary culture of Stenotrophomonas maltophilia and Arthrobacter sp. in a two-stage biofilm reactor. J Chem Technol Biotechnol 86:554–561. doi:10.1002/jctb.2550

    Article  Google Scholar 

  • Godia F, Sola C (1995) Fluidized bed bioreactors. Biotechnol Prog 11:479–497. doi:10.1021/bp00035a001

    Article  CAS  Google Scholar 

  • Gómez-De Jesús A, Romano-Baez FJ, Leyva-Amezcua L, Juárez-Ramírez C, Ruiz-Ordaz N, Galíndez- Mayer J (2009) Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation. J Hazard Mater 161:1140–1149. doi:10.1016/j.jhazmat.2008.04.077

    Article  Google Scholar 

  • Gruessner B, Watzin MC (1996) Response of aquatic communities from a Vermont stream to environmentally realistic atrazine exposure in laboratory microcosms. Environ Toxicol Chem 15(4):410–419. doi:10.1002/etc.5620150402

    Article  CAS  Google Scholar 

  • Hodge DS, Devinny JS JS (1995) Modeling removal of air contaminants by biofiltration. J Environ Eng 121:21–32. doi:10.1061/(ASCE)0733-9372(1995)121:1(21)

    Article  CAS  Google Scholar 

  • Jin l, Wang X-J, Gu Z-L, Zhou D-Z, Xie S-Q (2006) Biodegradation of lubricating oil in wastewater with Zoogloea sp. Pedosphere 16(4):540–544. doi:10.1016/S1002-0160(06)60086-6

  • Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 141:555–570. doi:10.1016/j.envpol.2005.07.024

    Article  CAS  Google Scholar 

  • Leitao A, Rodrigues A (1998) Dynamic behaviour of a fixed-bed biofilm reactor: analysis of the role of the intraparticle convective flow under biofilm growth. Biochem Eng J 2:l–9. doi:10.1016/S1369-703X(98)00011-4

    Article  Google Scholar 

  • Liu H, Xiong M (2009) Comparative toxicity of racemic metolachlor and S-MET to Chlorella pyrenoidosa. Aquat Toxicol 93:100–106. doi:10.1016/j.aquatox.2009.04.006

    Article  CAS  Google Scholar 

  • Liu SY, Freyer AJ, Bollang JM (1991) Microbial dechlorination of the herbicide metolachlor. J Agric Food Chem 39:631–636. doi:10.1021/jf00003a038

    Article  CAS  Google Scholar 

  • Macías A, Tafoya A, Ruiz N, Salmerón A, Juárez C, Ahuatzi D, Mondragón M, Galindez J (2009) Atrazine biodegradation by a bacterial community immobilized in two types of packed-bed biofilm reactors. World J Microbiol Biotechnol 25:2195–2204. doi:10.1007/s11274-009-0125-0

    Article  Google Scholar 

  • Mandelbaum RT, Allan DL, Wackett LP (1995) Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl Environ Microbiol 61:1451–1457

    CAS  Google Scholar 

  • Martins PF, Ortiz-Martinez C, De Carvalho G, Borba-Carneiro PI, Antunes-Azevedo R, Veiga-Pileggi SA, Soares de Melo I, Pileggi M (2007) Selection of microorganisms degrading S-metolachlor herbicide. Braz Arch Biol Techn 50:153–159. doi:10.1590/S1516-89132007000100019

    Article  CAS  Google Scholar 

  • Mathias T, Marino R, Keld H, Alvarenga de Oliverira C, Romano M (2012) Herbicide metolachlor causes changes in reproductive endocrinology of male Wistar rats. ISRN Toxicol 2012:1–7. doi:10.5402/2012/130846

    Article  Google Scholar 

  • Morgan CA, Hudson A, Konopka A, Nakatsu CH (2002) Analyses of microbial activity in biomass-recycle reactors using denaturing gradient gel electrophoresis of 16S rDNA and 16S rRNA PCR products. Can J Microbiol 48: 333–341. doi: 10.1139/W02-029

  • Muñoz A, Koskinen W, Cox L, Sadowsky M (2011) Biodegradation and mineralization of metolachlor and alachlor by Candida xestobii. J Agric Food Chem 59:619–627. doi:10.1021/jf103508w

    Article  Google Scholar 

  • Navarro S, Vela N, García C, Navarro G (2003) Persistence of simazine and terbuthylazine in a semiarid soil after organic amendment with urban sewage sludge. J Agr Food Chem 51(73):59–65. doi:10.1021/jf034435s

    Google Scholar 

  • Nawab A, Aleem A and Malik (2003) Determination of organochlorine pesticides in agricultural soil with special reference to gamma HCH degradation by Pseudomonas strains. Bioresource Technol 88:41–46. doi:10.1016/S0960-8524(02)00263-8

  • Newman A (1995) Atrazine found to cause chromosomal breaks. Environ Sci Technol 29(10):450. doi:10.1021/es00010a736

    Google Scholar 

  • Nicolella C, Van Loosdrecht M, Heijnen SJ (2000) Particle-based biofilm reactor technology. Trends Biotechnol 18(7):312–320. doi:10.1016/S0167-7799(00)01461-X

    Article  CAS  Google Scholar 

  • Paterson-Beedlea M, Kennedy JF, Melo FAD, Lloyd LL, Medeiros V (2000) A cellulosic exopolysaccharide produced from sugarcane molasses by a Zoogloea sp. Carbohydr Polym 42:375–383. doi:10.1016/S0144-8617(99)00179-4

    Article  Google Scholar 

  • Relman DA (1993) Universal bacterial 16S rDNA amplification and sequencing. In: Persing HD, Smith FT, Tenover CF, White JT (eds) Diagnostic molecular microbiology. Principles and applications. AMS, Washington, DC

    Google Scholar 

  • Rousseaux S, Hartmann A, Soulas G (2001) Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microb Ecol 36:211–222. doi:10.1111/j.1574-6941.2001.tb00842.x

    Article  CAS  Google Scholar 

  • Salmerón-Alcocer A, Ruiz-Ordaz N, Juárez-Ramírez C, Galíndez-Mayer J (2007) Continuous biodegradation of single and mixed chlorophenols by a mixed microbial culture constituted by Burkholderia sp., Microbacterium phyllosphaerae, and Candida tropicalis. Biochem Eng J 37:201–211. doi: 10.1016/j.bej.2007.04.015

  • Satola B, Wübbeler JH, Steinbüche A (2013) Metabolic characteristics of the species Variovorax paradoxus. Appl Microbiol Biotechnol 97(2):541–560. doi:10.1007/s00253-012-4585-z

    Article  CAS  Google Scholar 

  • Singh P, Suri CR, Cameotra SS (2004) Isolation of a member of Acinetobacter species involved in atrazine degradation. Biochem. Biophys Res Commun 317:697–702. doi:10.1016/j.bbrc.2004.03.112

    Article  CAS  Google Scholar 

  • Souissi Y, Bouchonnet S, Bourcier S, Kusk K (2013) Identification and ecotoxicity of degradation products of chloroacetamide herbicides from UV-treatment of water. Sci Total Environ 458–460:527–534. doi:10.1016/j.scitotenv.2013.04.064

    Article  Google Scholar 

  • Steinberg CEW, Lorenz R, Spieser OH (1995) Effects of atrazine on swimming behavior of zebrafish Brachydanio rerio. Water Res 29(3):981–985. doi:10.1016/0043-1354(94)00217-U

    Article  CAS  Google Scholar 

  • Strong L, Rosendahl C, Johnson G, Sadowsky M, Wackett L (2002) Arthrobacter aurescens TCL metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68:5973–5980. doi:10.1128/AEM.68.12.5973-5980.2002

    Article  CAS  Google Scholar 

  • Tchobanoglus G, Burton F, Stensel H (2003) Wastewater Engineering: Treatment and Reuse, 4th edn. Mc Graw Hill Inc, Boston

    Google Scholar 

  • Tomaszek JA, Grabas M (1998) Biofilm reactors: a new form of wastewater treatment. Chemistry for the protection of the environment (Pawlowski et al. ed.), pp. 105–116, Plenum Press.

  • US EPA. Environmental Protection Agency (2007) Appendix B: Ecological Effects—Risks of Metolachlor Use to Federally Listed Endangered Barton Springs Salamander. http://www.epa.gov/espp/litstatus/effects/bss-appendix-b.pdf.

  • Vallaeys T, Albino L, Soulas G, Wright AD, Weightmann AJ (1998) Isolation and characterization of a stable 2,4-dichlorophenoxyacetic acid degrading bacterium, Variovorax paradoxus, using chemostat culture. Biotechnol Lett 20:1073–1076. doi:10.1023/A:1005438930870

    Article  CAS  Google Scholar 

  • Vryzas Z, Alexoudis C, Vassiliou G, Galanis K, Papadopoulou-Mourkidou E (2011) Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece. Ecotoxicol Environ Saf 74:174–181. doi:10.1016/j.ecoenv.2010.04.011

    Article  CAS  Google Scholar 

  • Wang Q, Xie S (2012) Isolation and characterization of a high-efficiency soil atrazine-degrading Arthrobacter sp. strain. Int Biodeter Biodegr 71:61–66. doi:10.1016/j.ibiod.2012.04.005

    Article  CAS  Google Scholar 

  • Whaley CM, Armel GR, Wilson HP, Hines TE (2009) Evaluation of S-metolachlor and S-MET plus atrazine mixtures with mesotrione for broadleaf weed control in corn. Weed Technol 23:193–196. doi:10.1614/WT-08-123.1

    Article  CAS  Google Scholar 

  • Hach Co. (1999) Wastewater and Biosolids Analysis Manual, Hach Co., USA., pp 313–326.

  • Xu J, Yang M, Dai J, Cao X, Pan C, Qiu X, Xu M (2008) Degradation of acetochlor by four microbial communities. Bioresource Technol 99:7797–7802. doi:10.1016/j.biortech.2008.01.060

    Article  CAS  Google Scholar 

  • Zhang Y, Meng D, Wang Z, Guo H, Wang Y, Wang X, Dong X (2012) Oxidative stress response in atrazine-degrading bacteria exposed to atrazine. J Hazard Mater 229–230:434– 438. DOI:10.1016/j.jhazmat.2012.05.054

Download references

Acknowledgments

Cabrera-Orozco A. was the holder of a research grant from CONACyT. Galíndez-Nájera S.P. was the holder of a research grant from CONACyT and the Ministry of Public Education (SEP). Ruiz-Ordaz N, Galíndez-Mayer J, and Martínez-Jerónimo F.F. are holders of grants from COFAA-IPN, SIP-IPN, and SNI-Conacyt.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nora Ruiz-Ordaz or Juvencio Galíndez-Mayer.

Additional information

Responsible editor: Gerald Thouand

An erratum to this article is available at https://doi.org/10.1007/s11356-016-6496-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera-Orozco, A., Galíndez-Nájera, S.P., Ruiz-Ordaz, N. et al. Biodegradation of a commercial mixture of the herbicides atrazine and S-metolachlor in a multi-channel packed biofilm reactor. Environ Sci Pollut Res 24, 25656–25665 (2017). https://doi.org/10.1007/s11356-016-6204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6204-5

Keywords

Navigation