Underestimating neonicotinoid exposure: how extent and magnitude may be affected by land-use change

Abstract

Potential detrimental impacts of neonicotinoids on non-target organisms, especially bees, have been subject to a wide debate and the subsequent ban of three neonicotinoids by the EU. While recent research has fortified concerns regarding the effects of neonicotinoids on ecosystem service (ES) providers, potential impacts have been considered negligible in systems with a relatively small proportion of arable land and thus lower the use of these pesticides. In this paper we argue that there is not sufficient information to assess magnitude and extent of neonicotinoid application, as well as potential non-target impacts on ES providers in grass-dominated systems with frequent land-use change. Using Ireland as an example, we show that the highly dynamic agricultural landscape, in conjunction with estimated persistence times of neonicotinoids in soils, may lead to a much larger area (18.6 ± 0.6 % of the Irish agricultural area) exposed to these pesticides than initially assumed. Furthermore we present a number of important gaps in current research regarding the impacts of neonicotinoids on ES providers in such systems.

This is a preview of subscription content, log in to check access.

References

  1. Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    CAS  Article  Google Scholar 

  2. Bryden J, Gill RJ, Mitton RAA, Raine NE, Jansen VAA (2013) Chronic sublethal stress causes bee colony failure. Ecol Lett 16:1463–1469

    Article  Google Scholar 

  3. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci 108:662–667

    CAS  Article  Google Scholar 

  4. Chagnon M, Kreutzweiser D, Mitchell ED, Morrissey C, Noome D, Van der Sluijs J (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22:119–134

    CAS  Article  Google Scholar 

  5. Cloyd RA, Bethke JA (2011) Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments. Pest Manag Sci 67:3–9

    CAS  Article  Google Scholar 

  6. CSO (2014): Area farmed in June by region, type of land-use and year

  7. DAFM (2010) Food Harvest 2020 - A vision for Irish agri-food and fishery, Department for Agriculture. Food and the Marine, Ireland

  8. Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    CAS  Article  Google Scholar 

  9. Douglas MR, Rohr JR, Tooker JF (2014) Neonicotinoid insecticide travels through a soil food chain, disrupting biological control of non-target pests and decreasing soya bean yield. J Appl Ecology 52:250–260

  10. EASAC (2015) Ecosystem services, agriculture and neonicotinoids. European Academies’ Science Advisory Council, Halle/Saale, Germany

    Google Scholar 

  11. European Commission (2013): Commission implementation regulation (EU) No 485/2013 of 24 May 2013 amending Implementing Regulation (EU) No 540/2011, as regards the conditions of approval of the active substances clothianidin, thiamethoxam and imidacloprid, and prohibiting the use and sale of seeds treated with plant protection products containing those active substances (1). Official Journal of the European Union L139:12–26

  12. Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821

    Article  Google Scholar 

  13. Geiger F et al (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105

    CAS  Article  Google Scholar 

  14. Gill RJ, Raine NE (2014) Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct Ecol 28:1459–1471

    Article  Google Scholar 

  15. Girolami V, Mazzon L, Squartini A, Mori N, Marzaro M, Greatti M, Giorio C, Tapparo A (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. J Econ Entomol 102:1808–1815

    CAS  Article  Google Scholar 

  16. Girolami V, Marzaro M, Vivan L, Mazzon L, Greatti M, Giorio C, Marton D, Tapparo A (2012) Fatal powdering of bees in flight with particulates of neonicotinoids seed coating and humidity implication. J Appl Entomol 136:17–26

    CAS  Article  Google Scholar 

  17. Girolami V, Marzaro M, Vivan L, Mazzon L, Giorio C, Marton D, Tapparo A (2013) Aerial powdering of bees inside mobile cages and the extent of neonicotinoid cloud surrounding corn drillers. J Appl Entomol 137:35–44

    Article  Google Scholar 

  18. Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50:977–987

    Article  Google Scholar 

  19. Goulson D, Nicholls E, Botías C, Rotheray EL (2015): Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347

  20. Hallmann CA, Foppen RPB, van Turnhout CAM, de Kroon H, Jongejans E (2014) Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511:341–343

    CAS  Article  Google Scholar 

  21. Hanson HI, Smith HG, Hedlund K (2015) Agricultural management reduces emergence of pollen beetle parasitoids. Agr Ecosyst Environ 205:9–14

    Article  Google Scholar 

  22. Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Series B Biol Sci 274:303–313

    Article  Google Scholar 

  23. Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One 7, e29268

    CAS  Article  Google Scholar 

  24. Laycock I, Lenthall K, Barratt A, Cresswell J (2012) Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 21:1937–1945

    CAS  Article  Google Scholar 

  25. Main AR, Headley JV, Peru KM, Michel NL, Cessna AJ, Morrissey CA (2014) Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada’s Prairie Pothole Region. PLoS One 9, e92821

    Article  Google Scholar 

  26. Marzaro M, Vivan L, Targa A, Mazzon L, Mori N, Greatti M, Petrucco Toffolo E, Di Bernardo A, Giorio C, Marton D (2011) Lethal aerial powdering of honey bees with neonicotinoids from fragments of maize seed coat. B Insectol 64:119–126

    Google Scholar 

  27. Nuyttens D, Devarrewaere W, Verboven P, Foqué D (2013) Pesticide-laden dust emission and drift from treated seeds during seed drilling: a review. Pest Manag Sci 69:564–575

    CAS  Article  Google Scholar 

  28. PCS (2006) Pesticide usage survey - Grasslands and fodder crops 2003. Pesticide Control Service, Dublin, Ireland

    Google Scholar 

  29. PCS (2007) Pesticide usage survey—arable crops 2004. Pesticide Control Service, Dublin, Ireland

    Google Scholar 

  30. Peck DC (2009) Long-term effects of imidacloprid on the abundance of surface- and soil-active nontarget fauna in turf. Agric For Entomol 11:405–419

    Article  Google Scholar 

  31. Pilling ED, Jepson PC (1993) Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic Sci 39:293–297

    CAS  Article  Google Scholar 

  32. Poletti M, Maia A, Omoto C (2007) Toxicity of neonicotinoid insecticides to Neoseiulus californicus and Phytoseiulus macropilis (Acari: Phytoseiidae) and their impact on functional response to Tetranychus urticae (Acari: Tetranychidae). Biol Control 40:30–36

    CAS  Article  Google Scholar 

  33. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  Google Scholar 

  34. Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies, 365, 2959–2971

  35. Renwick A, Jansson T, Verburg PH, Revoredo-Giha C, Britz W, Gocht A, McCracken D (2013) Policy reform and agricultural land abandonment in the EU. Land Use Policy 30:446–457

    Article  Google Scholar 

  36. Rundlöf M, Andersson GKS, Bommarco R, Fries I, Hederström V, Herbertsson L, Jonsson O, Klatt BK, Pedersen TR, Yourstone J, Smith HG (2015): Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80

  37. Sánchez-Bayo F (2014) The trouble with neonicotinoids. Science 346:806–807

    Article  Google Scholar 

  38. Schmuck R, Stadler T, Schmidt H-W (2003) Field relevance of a synergistic effect observed in the laboratory between an EBI fungicide and a chloronicotinyl insecticide in the honeybee (Apis mellifera L, Hymenoptera). Pest Manag Sci 59:279–286

    CAS  Article  Google Scholar 

  39. Starner K, Goh K (2012) Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011. Bull Environ Contam Toxicol 88:316–321

    CAS  Article  Google Scholar 

  40. Tapparo A, Giorio C, Marzaro M, Marton D, Soldà L, Girolami V (2011) Rapid analysis of neonicotinoid insecticides in guttation drops of corn seedlings obtained from coated seeds. J Environ Monit 13:1564–1568

    CAS  Article  Google Scholar 

  41. Tapparo A, Marton D, Giorio C, Zanella A, Soldà L, Marzaro M, Vivan L, Girolami V (2012) Assessment of the environmental exposure of honeybees to particulate matter containing neonicotinoid insecticides coming from corn coated seeds. Environ Sci Technol 46:2592–2599

    CAS  Article  Google Scholar 

  42. Thomas MR (2008) Guidelines for the collection of pesticide usage statistics within agriculture and horticulture. European Commission, Luxembourg

    Google Scholar 

  43. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264

    CAS  Article  Google Scholar 

  44. Wang Y, Cang T, Zhao X, Yu R, Chen L, Wu C, Wang Q (2012) Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicol Environ Saf 79:122–128

    CAS  Article  Google Scholar 

  45. Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–352

    CAS  Article  Google Scholar 

  46. Zhao Y, Singleton P, Meredith S, Rennick G (2013) Current status of pesticides application and their residue in the water environment in Ireland. Int J Environ Stud 70:59–72

    CAS  Article  Google Scholar 

  47. Zimmermann J, González A, Jones MB, O’Brien P, Stout JC, Green S (2016): Assessing land-use history for reporting on cropland dynamics—A comparison between the Land-Parcel Identification System and traditional inter-annual approaches. Land Use Policy 52:30–40

Download references

Acknowledgments

We would like the anonymous reviewers for their helpful comments. Jesko Zimmermann is funded by the Environmental Protection Agency (EPA) Ireland (grant number 2012-CCRP-FS.9) as part of the Science, Technology, Research and Innovation for the Environment (STRIVE) Programme, financed by the Irish Government under the National Development Plan 2007-2013, administered on behalf of the Department of the Environment, Heritage and Local Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jesko Zimmermann.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, J., Stout, J.C. Underestimating neonicotinoid exposure: how extent and magnitude may be affected by land-use change. Environ Sci Pollut Res 23, 7050–7054 (2016). https://doi.org/10.1007/s11356-016-6159-6

Download citation

Keywords

  • Ecosystem services
  • Land-use change
  • Grassland
  • Persistence in soil
  • Neonicotinoids
  • Arable farming
  • Pesticides