Environmental Science and Pollution Research

, Volume 23, Issue 9, pp 8200–8218 | Cite as

Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes

  • Pauline Jacquet
  • David Daudé
  • Janek Bzdrenga
  • Patrick Masson
  • Mikael Elias
  • Eric ChabrièreEmail author
Environmental issues facing Chemical, Biological, Radiological and Nuclear risks


Organophosphorus chemicals are highly toxic molecules mainly used as pesticides. Some of them are banned warfare nerve agents. These compounds are covalent inhibitors of acetylcholinesterase, a key enzyme in central and peripheral nervous systems. Numerous approaches, including chemical, physical, and biological decontamination, have been considered for developing decontamination methods against organophosphates (OPs). This work is an overview of both validated and emerging strategies for the protection against OP pollution with special attention to the use of decontaminating enzymes. Considerable efforts have been dedicated during the past decades to the development of efficient OP degrading biocatalysts. Among these, the promising biocatalyst SsoPox isolated from the archaeon Sulfolobus solfataricus is emphasized in the light of recently published results. This hyperthermostable enzyme appears to be particularly attractive for external decontamination purposes with regard to both its catalytic and stability properties.


Bioremediation Phosphotriesterase Organophosphorus Pesticide Chemical warfare agent SsoPox Enzyme Decontamination 



P.J. and J.B. are Ph.D. students granted by Direction Générale de l’Armement (DGA).


  1. Afriat L, Roodveldt C, Manco G, Tawfik DS (2006) The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase†. Biochemistry (Mosc) 45:13677–13686. doi: 10.1021/bi061268r CrossRefGoogle Scholar
  2. Afriat-Jurnou L, Jackson CJ, Tawfik DS (2012) Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry (Mosc) 51:6047–6055. doi: 10.1021/bi300694t CrossRefGoogle Scholar
  3. Aharoni A, Gaidukov L, Yagur S et al (2004) Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization. Proc Natl Acad Sci USA 101:482–487. doi: 10.1073/pnas.2536901100 CrossRefGoogle Scholar
  4. Alcolombri U, Elias M, Tawfik DS (2011) Directed evolution of sulfotransferases and paraoxonases by ancestral libraries. J Mol Biol 411:837–853. doi: 10.1016/j.jmb.2011.06.037 CrossRefGoogle Scholar
  5. Aldridge WN (1953) Serum esterases. 2. An enzyme hydrolysing diethyl p-nitrophenyl phosphate (E 600) and its identity with the A-esterase of mammalian sera. Biochem J 53:117–124CrossRefGoogle Scholar
  6. Amitai G, Gaidukov L, Adani R et al (2006) Enhanced stereoselective hydrolysis of toxic organophosphates by directly evolved variants of mammalian serum paraoxonase. FEBS J 273:1906–1919. doi: 10.1111/j.1742-4658.2006.05198.x CrossRefGoogle Scholar
  7. Amitai G, Gupta RD, Tawfik DS (2007) Latent evolutionary potentials under the neutral mutational drift of an enzyme. HFSP J 1:67–78. doi: 10.2976/1.2739115/10.2976/1 CrossRefGoogle Scholar
  8. Ashani Y, Gupta RD, Goldsmith M et al (2010) Stereo-specific synthesis of analogs of nerve agents and their utilization for selection and characterization of paraoxonase (PON1) catalytic scavengers. Chem Biol Interact 187:362–369. doi: 10.1016/j.cbi.2010.02.039 CrossRefGoogle Scholar
  9. Bai Y, Chen J, Yang Y et al (2010) Degradation of organophosphorus pesticide induced by oxygen plasma: Effects of operating parameters and reaction mechanisms. Chemosphere 81:408–414. doi: 10.1016/j.chemosphere.2010.06.071 CrossRefGoogle Scholar
  10. Balkaya N (1999) A study of optimal experimental conditions in the photocatalytic degradation of an organophosphorous insecticide. Environ Technol 20:617–623. doi: 10.1080/09593332008616856 CrossRefGoogle Scholar
  11. Bannard RAB, Casselman AA, Purdon JG, Bovenkamp JW (1991) Broad spectrum chemical decontaminant system. Patent US 5:075,297Google Scholar
  12. Bar-Rogovsky H, Hugenmatter A, Tawfik DS (2013) The evolutionary origins of detoxifying enzymes: the mammalian serum paraoxonases (PONs) relate to bacterial homoserine lactonases. J Biol Chem 288:23914–23927. doi: 10.1074/jbc.M112.427922 CrossRefGoogle Scholar
  13. Basfar AA, Mohamed KA, Al-Abduly AJ et al (2007) Degradation of diazinon contaminated waters by ionizing radiation. Radiat Phys Chem 76:1474–1479. doi: 10.1016/j.radphyschem.2007.02.055 CrossRefGoogle Scholar
  14. Beauregard G, Lum J, Roufogalis BD (1981) Effect of histidine modification on the aging of organophosphate-inhibited acetylcholinesterase. Biochem Pharmacol 30:2915–2920. doi: 10.1016/0006-2952(81)90252-5 CrossRefGoogle Scholar
  15. Benning MM, Kuo JM, Raushel FM, Holden HM (1994) Three-dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents. Biochemistry (Mosc) 33:15001–15007. doi: 10.1021/bi00254a008 CrossRefGoogle Scholar
  16. Benning MM, Kuo JM, Raushel FM, Holden HM (1995) Three-dimensional structure of the binuclear metal center of phosphotriesterase. Biochemistry (Mosc) 34:7973–7978. doi: 10.1021/bi00025a002 CrossRefGoogle Scholar
  17. Bigley AN, Xu C, Henderson TJ et al (2013) Enzymatic neutralization of the chemical warfare agent VX: evolution of phosphotriesterase for phosphorothiolate hydrolysis. J Am Chem Soc 135:10426–10432. doi: 10.1021/ja402832z CrossRefGoogle Scholar
  18. Braue Jr EH, Smith KH, Doxzon BF, et al (2010a) Evaluation of RSDL, M291 SDK, 0.5% bleach, 1% soapy water and SERPACWA. Part 2. Challenge with soman. DTIC Document: ADA539735, Army Medical Research institute of chemical defense Aberdeen Proving ground MDGoogle Scholar
  19. Braue Jr EH, Smith KH, Doxzon BF, et al (2010b) Evaluation of RSDL, M291 SDK, 0.5% bleach, 1% soapy water and SERPACWA. Part 1. Challenge with VX. DTIC Document: ADA525186, Army Medical Research institute of chemical defense Aberdeen Proving ground MDGoogle Scholar
  20. Breger JC, Walper SA, Oh E et al (2015) Quantum dot display enhances activity of a phosphotriesterase trimer. Chem Commun 51:6403–6406. doi: 10.1039/C5CC00418G CrossRefGoogle Scholar
  21. Broomfield CA, Ford KW (1991) Hydrolysis of nerve gases by plasma enzymes. Proc 3rd Int Meet Cholinesterases Gd-Motte 161.Google Scholar
  22. Brown KA (1980) Phosphotriesterases of flavobacterium sp. Soil Biol Biochem 12:105–112. doi: 10.1016/0038-0717(80)90044-9 CrossRefGoogle Scholar
  23. Bzdrenga J, Hiblot J, Gotthard G et al (2014) SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase. BMC Res Notes 7:333. doi: 10.1186/1756-0500-7-333 CrossRefGoogle Scholar
  24. Caldwell SR, Raushel FM (1991a) Detoxification of organophosphate pesticides using an immobilized phosphotriesterase from Pseudomonas diminuta. Biotechnol Bioeng 37:103–109. doi: 10.1002/bit.260370203 CrossRefGoogle Scholar
  25. Caldwell SR, Raushel FM (1991b) Detoxification of organophosphate pesticides using a nylon based immobilized phosphotriesterase fromPseudomonas diminuta. Appl Biochem Biotechnol 31:59–73. doi: 10.1007/BF02922126 CrossRefGoogle Scholar
  26. Chabriere E, Elias M, Hiblot J, Raoult D (2014) Sulfolobal phosphotriesterase-like (pll) lactonases activity having enhanced properties and the uses thereof.Google Scholar
  27. Chabriere E, Elias M, Hiblot J, Raoult D (2015) Vulcanisaetal phosphotriesterase-like lactonases (pll) having enhanced properties and the uses thereof.Google Scholar
  28. Chen W, Richins RD, Mulchandani P et al (2000) Biodegradation Of Organophosphorus Nerve Agents by Surface Expressed Organophosphorus Hydrolase. In: Zwanenburg B, Mikołajczyk M, Kiełbasiński P (eds) Enzymes in action. Springer, The Netherlands, pp 211–221CrossRefGoogle Scholar
  29. Chen H, Shen M, Chen R et al (2011) Photocatalytic degradation of commercial methyl parathion in aqueous suspension containing La‐doped TiO2 nanoparticles. Environ Technol 32:1515–1522. doi: 10.1080/09593330.2010.543927 CrossRefGoogle Scholar
  30. Cheng T, Liu L, Wang B et al (1997) Nucleotide sequence of a gene encoding an organophosphorus nerve agent degrading enzyme from Alteromonas haloplanktis. J Ind Microbiol Biotechnol 18:49–55. doi: 10.1038/sj.jim.2900358 CrossRefGoogle Scholar
  31. Cheng T-C, Defrank JJ (2000) Hydrolysis of Organophosphorus Compounds by Bacterial Prolidases. In: Zwanenburg B, Mikołajczyk M, Kiełbasiński P (eds) Enzymes in action. Springer, The Netherlands, pp 243–261CrossRefGoogle Scholar
  32. Cheng T-C, Harvey SP, Stroup AN (1993) Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59:3138–3140Google Scholar
  33. Cheng TC, Harvey SP, Chen GL (1996) Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme. Appl Environ Microbiol 62:1636–1641Google Scholar
  34. Cheng T-C, Rastogi VK, Defrank JJ, Sawiris GP (1998) G-type nerve agent decontamination by Alteromonas prolidase. Ann N Y Acad Sci 864:253–258. doi: 10.1111/j.1749-6632.1998.tb10316.x CrossRefGoogle Scholar
  35. Cheng T, DeFrank JJ, Rastogi VK (1999) Alteromonas prolidase for organophosphorus G-agent decontamination. Chem Biol Interact 119–120:455–462. doi: 10.1016/S0009-2797(99)00058-7 CrossRefGoogle Scholar
  36. Chen-Goodspeed M, Sogorb MA, Wu F et al (2001a) Structural determinants of the substrate and stereochemical specificity of phosphotriesterase†. Biochemistry (Mosc) 40:1325–1331. doi: 10.1021/bi001548l CrossRefGoogle Scholar
  37. Chen-Goodspeed M, Sogorb MA, Wu F, Raushel FM (2001b) Enhancement, relaxation, and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues†. Biochemistry (Mosc) 40:1332–1339. doi: 10.1021/bi001549d CrossRefGoogle Scholar
  38. Cherny I, Greisen P, Ashani Y et al (2013) Engineering V-type nerve agents detoxifying enzymes using computationally focused libraries. ACS Chem Biol 8:2394–2403. doi: 10.1021/cb4004892 CrossRefGoogle Scholar
  39. Cho CM-H, Mulchandani A, Chen W (2002) Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. Appl Environ Microbiol 68:2026–2030. doi: 10.1128/AEM.68.4.2026-2030.2002 CrossRefGoogle Scholar
  40. Cho CM-H, Mulchandani A, Chen W (2004) Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol 70:4681–4685. doi: 10.1128/AEM.70.8.4681-4685.2004 CrossRefGoogle Scholar
  41. Cho CM-H, Mulchandani A, Chen W (2006) Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides. Protein Eng, Des Sel 19:99–105. doi: 10.1093/protein/gzj007 CrossRefGoogle Scholar
  42. Costante M, Biggemann L, Alamneh Y et al (2012) Hydrolysis potential of recombinant human skin and kidney prolidase against diisopropylfluorophosphate and sarin by in vitro analysis. Toxicol In Vitro 26:182–188. doi: 10.1016/j.tiv.2011.11.006 CrossRefGoogle Scholar
  43. Davies HG, Richter RJ, Keifer M et al (1996) The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet 14:334–336. doi: 10.1038/ng1196-334 CrossRefGoogle Scholar
  44. Dawson RM, Pantelidis S, Rose HR, Kotsonis SE (2008) Degradation of nerve agents by an organophosphate-degrading agent (OpdA). J Hazard Mater 157:308–314. doi: 10.1016/j.jhazmat.2007.12.099 CrossRefGoogle Scholar
  45. DeCoste JB, Peterson GW (2014) Metal–organic frameworks for air purification of toxic chemicals. Chem Rev 114:5695–5727. doi: 10.1021/cr4006473 CrossRefGoogle Scholar
  46. DeFrank JJ, Cheng TC (1991) Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate. J Bacteriol 173:1938–1943Google Scholar
  47. DeFrank JJ, Beaudry WT, Cheng T-C et al (1993) Screening of halophilic bacteria and Alteromonas species for organophosphorus hydrolyzing enzyme activity. Chem Biol Interact 87:141–148. doi: 10.1016/0009-2797(93)90035-W CrossRefGoogle Scholar
  48. Désiré B, Saint-André S (1986) Interaction of soman with beta-cyclodextrin. Fundam Appl Toxicol Off J Soc Toxicol 7:646–657CrossRefGoogle Scholar
  49. Désiré B, Saint-André S (1987) Inactivation of sarin and soman by cyclodextrins in vitro. Experientia 43:395–397CrossRefGoogle Scholar
  50. diTargiani RC, Chandrasekaran L, Belinskaya T, Saxena A (2010) In search of a catalytic bioscavenger for the prophylaxis of nerve agent toxicity. Chem Biol Interact 187:349–354. doi: 10.1016/j.cbi.2010.02.021 CrossRefGoogle Scholar
  51. Donarski WJ, Dumas DP, Heitmeyer DP et al (1989) Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry (Mosc) 28:4650–4655. doi: 10.1021/bi00437a021 CrossRefGoogle Scholar
  52. Dong Y-J, Bartlam M, Sun L et al (2005) Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J Mol Biol 353:655–663. doi: 10.1016/j.jmb.2005.08.057 CrossRefGoogle Scholar
  53. Draganov DI (2010) Lactonases with oragnophosphatase activity: structural and evolutionary perspectives. Chem Biol Interact 187:370–372. doi: 10.1016/j.cbi.2010.01.039 CrossRefGoogle Scholar
  54. Draganov DI, Stetson PL, Watson CE et al (2000) Rabbit serum paraoxonase 3 (PON3) is a high density lipoprotein-associated lactonase and protects low density lipoprotein against oxidation. J Biol Chem 275:33435–33442. doi: 10.1074/jbc.M004543200 CrossRefGoogle Scholar
  55. Dumas DP, Caldwell SR, Wild JR, Raushel FM (1989) Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem 264:19659–19665Google Scholar
  56. Dumas DP, Durst HD, Landis WG et al (1990) Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta. Arch Biochem Biophys 277:155–159. doi: 10.1016/0003-9861(90)90564-F CrossRefGoogle Scholar
  57. Elias M, Dupuy J, Merone L et al (2007) Crystallization and preliminary X-ray diffraction analysis of the hyperthermophilic Sulfolobus solfataricus phosphotriesterase. Acta Crystallograph Sect F Struct Biol Cryst Commun 63:553–555. doi: 10.1107/S1744309107023512 CrossRefGoogle Scholar
  58. Elias M, Dupuy J, Merone L et al (2008) Structural basis for natural lactonase and promiscuous phosphotriesterase activities. J Mol Biol 379:1017–1028. doi: 10.1016/j.jmb.2008.04.022 CrossRefGoogle Scholar
  59. Elsinghorst PW, Worek F, Koller M (2015) Detoxification of organophosphorus pesticides and nerve agents through RSDL: efficacy evaluation by 31P NMR spectroscopy. Toxicol Lett 233:207–213. doi: 10.1016/j.toxlet.2014.12.004 CrossRefGoogle Scholar
  60. English II J (1974) Design aspects of a low emission, two-stage incinerator. In: Proceedings of the 1974 ASME National Incinerator Conference. ASME, New YorkGoogle Scholar
  61. Estour F, Letort S, Müller S et al (2013) Functionalized cyclodextrins bearing an alpha nucleophile—a promising way to degrade nerve agents. Chem Biol Interact 203:202–207. doi: 10.1016/j.cbi.2012.10.020 CrossRefGoogle Scholar
  62. Evgenidou E, Konstantinou I, Fytianos K, Albanis T (2006) Study of the removal of dichlorvos and dimethoate in a titanium dioxide mediated photocatalytic process through the examination of intermediates and the reaction mechanism. J Hazard Mater 137:1056–1064. doi: 10.1016/j.jhazmat.2006.03.042 CrossRefGoogle Scholar
  63. Fielding G (1964) Field decontamination studies with chemical warfare decontaminating solution DS2. US Naval Research Laboratory, Washigton DCGoogle Scholar
  64. Firmin MC (2003) The future of decontamination operations—an analysis of decontamination foam 200. Army Chem Rev 34–36Google Scholar
  65. Fu G, Cui Z, Huang T, Li S (2004) Expression, purification, and characterization of a novel methyl parathion hydrolase. Protein Expr Purif 36:170–176. doi: 10.1016/j.pep.2004.04.019 CrossRefGoogle Scholar
  66. Furlong CE, Richter RJ, Chapline C, Crabb JW (1991) Purification of rabbit and human serum paraoxonase. Biochemistry (Mosc) 30:10133–10140. doi: 10.1021/bi00106a009 CrossRefGoogle Scholar
  67. Gan KN, Smolen A, Eckerson HW, Du BNL (1991) Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab Dispos 19:100–106Google Scholar
  68. Gao Y, Truong YB, Cacioli P et al (2014) Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles. Enzyme Microb Technol 54:38–44. doi: 10.1016/j.enzmictec.2013.10.001 CrossRefGoogle Scholar
  69. Garbin JR, Milori DMBP, Simões ML et al (2007) Influence of humic substances on the photolysis of aqueous pesticide residues. Chemosphere 66:1692–1698. doi: 10.1016/j.chemosphere.2006.07.017 CrossRefGoogle Scholar
  70. Goldsmith M, Ashani Y, Simo Y et al (2012) Evolved stereoselective hydrolases for broad-spectrum G-type nerve agent detoxification. Chem Biol 19:456–466. doi: 10.1016/j.chembiol.2012.01.017 CrossRefGoogle Scholar
  71. Gonçalves C, Dimou A, Sakkas V et al (2006) Photolytic degradation of quinalphos in natural waters and on soil matrices under simulated solar irradiation. Chemosphere 64:1375–1382. doi: 10.1016/j.chemosphere.2005.12.020 CrossRefGoogle Scholar
  72. Gopal S, Rastogi V, Ashman W, Mulbry W (2000) Mutagenesis of organophosphorus hydrolase to enhance hydrolysis of the nerve agent VX. Biochem Biophys Res Commun 279:516–519. doi: 10.1006/bbrc.2000.4004 CrossRefGoogle Scholar
  73. Gotthard G, Hiblot J, Gonzalez D et al (2013a) Crystallization and preliminary X-ray diffraction analysis of the organophosphorus hydrolase OPHC2 from Pseudomonas pseudoalcaligenes. Acta Crystallograph Sect F Struct Biol Cryst Commun 69:73–76. doi: 10.1107/S174430911205049X CrossRefGoogle Scholar
  74. Gotthard G, Hiblot J, Gonzalez D et al (2013b) Structural and enzymatic characterization of the phosphotriesterase OPHC2 from Pseudomonas pseudoalcaligenes. PLoS One 8, e77995. doi: 10.1371/journal.pone.0077995 CrossRefGoogle Scholar
  75. Gunnell D, Eddleston M, Phillips MR, Konradsen F (2007) The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health 7:357. doi: 10.1186/1471-2458-7-357 CrossRefGoogle Scholar
  76. Gupta RC (2009) Handbook of toxicology of chemical warfare agents.Google Scholar
  77. Gupta RD, Goldsmith M, Ashani Y et al (2011) Directed evolution of hydrolases for prevention of G-type nerve agent intoxication. Nat Chem Biol 7:120–125. doi: 10.1038/nchembio.510 CrossRefGoogle Scholar
  78. Harel M, Aharoni A, Gaidukov L et al (2004) Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11:412–419. doi: 10.1038/nsmb767 CrossRefGoogle Scholar
  79. Harper LL, McDaniel CS, Miller CE, Wild JR (1988) Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes. Appl Environ Microbiol 54:2586–2589Google Scholar
  80. Hartleib J, Rüterjans H (2001a) Insights into the reaction mechanism of the diisopropyl fluorophosphatase from Loligo vulgaris by means of kinetic studies, chemical modification and site-directed mutagenesis. Biochim Biophys Acta BBA—Protein Struct Mol Enzymol 1546:312–324. doi: 10.1016/S0167-4838(01)00153-4 CrossRefGoogle Scholar
  81. Hartleib J, Rüterjans H (2001b) High-yield expression, purification, and characterization of the recombinant Diisopropylfluorophosphatase from Loligo vulgaris. Protein Expr Purif 21:210–219. doi: 10.1006/prep.2000.1360 CrossRefGoogle Scholar
  82. Hartleib J, Geschwindner S, Scharff EI, Rüterjans H (2001) Role of calcium ions in the structure and function of thedi-isopropylfluorophosphatase from Loligo vulgaris. Biochem J 353:579–589CrossRefGoogle Scholar
  83. Havens PL, Rase HF (1993) Reusable immobilized enzyme/polyurethane sponge for removal and detoxification of localized organophosphate pesticide spills. Ind Eng Chem Res 32:2254–2258. doi: 10.1021/ie00022a009 CrossRefGoogle Scholar
  84. Hiblot J, Gotthard G, Chabriere E, Elias M (2012a) Structural and enzymatic characterization of the lactonase SisLac from Sulfolobus islandicus. PLoS One 7, e47028. doi: 10.1371/journal.pone.0047028 CrossRefGoogle Scholar
  85. Hiblot J, Gotthard G, Chabriere E, Elias M (2012b) Characterisation of the organophosphate hydrolase catalytic activity of SsoPox. Sci Rep. doi: 10.1038/srep00779 Google Scholar
  86. Hiblot J, Gotthard G, Elias M, Chabriere E (2013) Differential active site loop conformations mediate promiscuous activities in the lactonase SsoPox. PLoS One 8, e75272. doi: 10.1371/journal.pone.0075272 CrossRefGoogle Scholar
  87. Hill CM, Wu F, Cheng T-C et al (2000) Substrate and stereochemical specificity of the organophosphorus acid anhydrolase from Alteromonas sp. JD6.5 toward p-nitrophenyl phosphotriesters. Bioorg Med Chem Lett 10:1285–1288. doi: 10.1016/S0960-894X(00)00213-4 CrossRefGoogle Scholar
  88. Hill CM, Li W-S, Thoden JB et al (2003) Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site. J Am Chem Soc 125:8990–8991. doi: 10.1021/ja0358798 CrossRefGoogle Scholar
  89. Hodgins SM, Kasten SA, Harrison J et al (2013) Assessing protection against OP pesticides and nerve agents provided by wild-type HuPON1 purified from Trichoplusia ni larvae or induced via adenoviral infection. Chem Biol Interact 203:177–180. doi: 10.1016/j.cbi.2012.10.015 CrossRefGoogle Scholar
  90. Horne I, Sutherland TD, Harcourt RL et al (2002) Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68:3371–3376. doi: 10.1128/AEM.68.7.3371-3376.2002 CrossRefGoogle Scholar
  91. Horne I, Qiu X, Russell RJ, Oakeshott JG (2003) The phosphotriesterase gene opdA in Agrobacterium radiobacter P230 is transposable. FEMS Microbiol Lett 222:1–8. doi: 10.1016/S0378-1097(03)00211-8 CrossRefGoogle Scholar
  92. Horne I, Qiu X, Ollis DL et al (2006) Functional effects of amino acid substitutions within the large binding pocket of the phosphotriesterase OpdA from Agrobacterium sp. P230. FEMS Microbiol Lett 259:187–194. doi: 10.1111/j.1574-6968.2006.00262.x CrossRefGoogle Scholar
  93. Hoskin FCG (1971) Diisopropylphosphorofluoridate and tabun: enzymatic hydrolysis and nerve function. Science 172:1243–1245. doi: 10.1126/science.172.3989.1243 CrossRefGoogle Scholar
  94. Hoskin FC, Roush AH (1982) Hydrolysis of nerve gas by squid-type diisopropyl phosphorofluoridate hydrolyzing enzyme on agarose resin. Science 215:1255–1257. doi: 10.1126/science.7058344 CrossRefGoogle Scholar
  95. Hoskin FC, Steeves DM, Walker JE (1999) Substituted cyclodextrin as a model for a squid enzyme that hydrolyzes the nerve gas soman. Biol Bull 197:284–285CrossRefGoogle Scholar
  96. Hossain MS, Fakhruddin ANM, Chowdhury MAZ, Alam MK (2013) Degradation of chlorpyrifos, an organophosphorus insecticide in aqueous solution with gamma irradiation and natural sunlight. J Environ Chem Eng 1:270–274. doi: 10.1016/j.jece.2013.05.006 CrossRefGoogle Scholar
  97. Hu Y, Bai Y, Yu H et al (2013) Degradation of selected organophosphate pesticides in wastewater by dielectric barrier discharge plasma. Bull Environ Contam Toxicol 91:314–319. doi: 10.1007/s00128-013-1048-x CrossRefGoogle Scholar
  98. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152. doi: 10.1002/jcc.20634 CrossRefGoogle Scholar
  99. Ikehata K, El-Din MG (2006) Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review. J Environ Eng Sci 5:81–135. doi: 10.1139/S05-046 CrossRefGoogle Scholar
  100. Iyer R, Iken B (2015) Protein engineering of representative hydrolytic enzymes for remediation of organophosphates. Biochem Eng J 94:134–144. doi: 10.1016/j.bej.2014.11.010 CrossRefGoogle Scholar
  101. Jackson C, Kim H-K, Carr PD et al (2005) The structure of an enzyme–product complex reveals the critical role of a terminal hydroxide nucleophile in the bacterial phosphotriesterase mechanism. Biochim Biophys Acta BBA - Proteins Proteomics 1752:56–64. doi: 10.1016/j.bbapap.2005.06.008 CrossRefGoogle Scholar
  102. Jackson CJ, Weir K, Herlt A et al (2009) Structure-based rational design of a phosphotriesterase. Appl Environ Microbiol 75:5153–5156. doi: 10.1128/AEM.00629-09 CrossRefGoogle Scholar
  103. Jaipieam S, Visuthismajarn P, Sutheravut P et al (2009) Organophosphate pesticide residues in drinking water from artesian wells and health risk assessment of agricultural communities, Thailand. Hum Ecol Risk Assess Int J 15:1304–1316. doi: 10.1080/10807030903306984 CrossRefGoogle Scholar
  104. Jeong Y-S, Choi JM, Kyeong H-H et al (2014) Rational design of organophosphorus hydrolase with high catalytic efficiency for detoxifying a V-type nerve agent. Biochem Biophys Res Commun 449:263–267. doi: 10.1016/j.bbrc.2014.04.155 CrossRefGoogle Scholar
  105. Jonidi-Jafari A, Shirzad-Siboni M, Yang J-K et al (2004) Photocatalytic degradation of diazinon with illuminated ZnO–TiO2 composite. J Taiwan Inst Chem Eng. doi: 10.1016/j.jtice.2014.12.020 Google Scholar
  106. Josse D, Xie W, Masson P, Lockridge O (1999a) Human serum paraoxonase (PON1): identification of essential amino acid residues by group-selective labelling and site-directed mutagenesis. Chem Biol Interact 119–120:71–78. doi: 10.1016/S0009-2797(99)00015-0 CrossRefGoogle Scholar
  107. Josse D, Xie W, Renault F et al (1999b) Identification of residues essential for human paraoxonase (PON1) arylesterase/organophosphatase activities. Biochemistry (Mosc) 38:2816–2825. doi: 10.1021/bi982281h CrossRefGoogle Scholar
  108. Kalakuntla RK, Wille T, Le Provost R et al (2013) New modified β-cyclodextrin derivatives as detoxifying agents of chemical warfare agents (I). Synthesis and preliminary screening: Evaluation of the detoxification using a half-quantitative enzymatic assay. Toxicol Lett 216:200–205. doi: 10.1016/j.toxlet.2012.11.020 CrossRefGoogle Scholar
  109. Kallnik V, Bunescu A, Sayer C et al (2014) Characterization of a phosphotriesterase-like lactonase from the hyperthermoacidophilic crenarchaeon Vulcanisaeta moutnovskia. J Biotechnol 190:11–17. doi: 10.1016/j.jbiotec.2014.04.026 CrossRefGoogle Scholar
  110. Kamiya M, Kameyama K (2001) Effects of selected metal ions on photodegradation of organophosphorus pesticides sensitized by humic acids. Chemosphere 45:231–235. doi: 10.1016/S0045-6535(00)00573-7 CrossRefGoogle Scholar
  111. Katsemi V, Lücke C, Koepke J et al (2005) Mutational and structural studies of the diisopropylfluorophosphatase from Loligo vulgaris shed new light on the catalytic mechanism of the enzyme†. Biochemistry (Mosc) 44:9022–9033. doi: 10.1021/bi0500675 CrossRefGoogle Scholar
  112. Khan A, Kotta S, Ansari S et al (2013) Recent advances in decontamination of chemical warfare agents. Def Sci J 63:487–496. doi: 10.14429/dsj.63.2882 CrossRefGoogle Scholar
  113. Khersonsky O, Roodveldt C, Tawfik DS (2006) Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol 10:498–508. doi: 10.1016/j.cbpa.2006.08.011 CrossRefGoogle Scholar
  114. Khersonsky O, Rosenblat M, Toker L et al (2009) Directed evolution of serum paraoxonase PON3 by family shuffling and ancestor/consensus mutagenesis, and its biochemical characterization. Biochemistry (Mosc) 48:6644–6654. doi: 10.1021/bi900583y CrossRefGoogle Scholar
  115. Kim S-M, Vogelpohl A (1998) Degradation of organic pollutants by the photo-fenton-process. Chem Eng Technol 187–191Google Scholar
  116. Kim SH, Kim JH, Kang B-K (2007) Decomposition reaction of organophosphorus nerve agents on solid surfaces with atmospheric radio frequency plasma generated gaseous species. Langmuir 23:8074–8078. doi: 10.1021/la700692t CrossRefGoogle Scholar
  117. Kim K, Tsay OG, Atwood DA, Churchill DG (2011) Destruction and detection of chemical warfare agents. Chem Rev 111:5345–5403. doi: 10.1021/cr100193y CrossRefGoogle Scholar
  118. Kirby SD, Norris JR, Richard Smith J et al (2013) Human paraoxonase double mutants hydrolyze V and G class organophosphorus nerve agents. Chem Biol Interact 203:181–185. doi: 10.1016/j.cbi.2012.10.023 CrossRefGoogle Scholar
  119. Kondo Y, Ishigami A, Kubo S et al (2004) Senescence marker protein-30 is a unique enzyme that hydrolyzes diisopropyl phosphorofluoridate in the liver. FEBS Lett 570:57–62. doi: 10.1016/j.febslet.2004.06.028 CrossRefGoogle Scholar
  120. Konstantinou IK, Sakellarides TM, Sakkas VA, Albanis TA (2001) Photocatalytic degradation of selected s-Triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions. Environ Sci Technol 35:398–405. doi: 10.1021/es001271c CrossRefGoogle Scholar
  121. Lam MW, Tantuco K, Mabury SA (2003) PhotoFate: a new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters. Environ Sci Technol 37:899–907. doi: 10.1021/es025902+ CrossRefGoogle Scholar
  122. Lee J, Farha OK, Roberts J et al (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450. doi: 10.1039/b807080f CrossRefGoogle Scholar
  123. LeJeune KE, Russell AJ (1996) Covalent binding of a nerve agent hydrolyzing enzyme within polyurethane foams. Biotechnol Bioeng 51:450–457. doi: 10.1002/(SICI)1097-0290(19960820)51:4<450::AID-BIT8>3.0.CO;2-H CrossRefGoogle Scholar
  124. LeJeune KE, Russell AJ (1999) Biocatalytic nerve agent detoxification in fire fighting foams. Biotechnol Bioeng 62:659–665. doi: 10.1002/(SICI)1097-0290(19990320)62:6<659::AID-BIT5>3.0.CO;2-N CrossRefGoogle Scholar
  125. LeJeune KE, Mesiano AJ, Bower SB et al (1997) Dramatically stabilized phosphotriesterase—polymers for nerve agent degradation. Biotechnol Bioeng 54:105–114. doi: 10.1002/(SICI)1097-0290(19970420)54:2<105::AID-BIT2>3.0.CO;2-P CrossRefGoogle Scholar
  126. LeJeune KE, Wild JR, Russell AJ (1998) Nerve agents degraded by enzymatic foams. Nature 395:27–28. doi: 10.1038/25634 CrossRefGoogle Scholar
  127. Lessenger JE, Reese BE (1999) Rational use of cholinesterase activity testing in pesticide poisoning. J Am Board Fam Pract 12:307–314. doi: 10.3122/jabfm.12.4.307 CrossRefGoogle Scholar
  128. Letort S, Mathiron D, Grel T et al (2015) The first 2 IB,3 IA-heterodifunctionalized β-cyclodextrin derivatives as artificial enzymes. Chem Commun 51:2601–2604. doi: 10.1039/C4CC09189B CrossRefGoogle Scholar
  129. Li WF, Furlong CE, Costa LG (1995) Paraoxonase protects against chlorpyrifos toxicity in mice. Toxicol Lett 76:219–226. doi: 10.1016/0378-4274(95)80006-Y CrossRefGoogle Scholar
  130. Li L, Wu Q, Guo Y, Hu C (2005) Nanosize and bimodal porous polyoxotungstate–anatase TiO2 composites: preparation and photocatalytic degradation of organophosphorus pesticide using visible-light excitation. Microporous Mesoporous Mater 87:1–9. doi: 10.1016/j.micromeso.2005.07.035 CrossRefGoogle Scholar
  131. Liu H, Zhang J-J, Wang S-J et al (2005) Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun 334:1107–1114. doi: 10.1016/j.bbrc.2005.07.006 CrossRefGoogle Scholar
  132. Luo X-J, Kong X-D, Zhao J et al (2014) Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp. Biotechnol Bioeng 111:1920–1930. doi: 10.1002/bit.25272 CrossRefGoogle Scholar
  133. Mackness MI, Arrol S, Durrington PN (1991) Substrate specificity of human serum paraoxonase. Biochem Soc Trans 19:304SCrossRefGoogle Scholar
  134. Maher MJ, Ghosh M, Grunden AM et al (2004) Structure of the prolidase from Pyrococcus furiosus. Biochemistry (Mosc) 43:2771–2783. doi: 10.1021/bi0356451 CrossRefGoogle Scholar
  135. Manavathi B, Pakala SB, Gorla P et al (2005) Influence of zinc and cobalt on expression and activity of parathion hydrolase from Flavobacterium sp. ATCC27551. Pestic Biochem Physiol 83:37–45. doi: 10.1016/j.pestbp.2005.03.007 CrossRefGoogle Scholar
  136. Mansee AH, Chen W, Mulchandani A (2005) Detoxification of the organophosphate nerve agent coumaphos using organophosphorus hydrolase immobilized on cellulose materials. J Ind Microbiol Biotechnol 32:554–560. doi: 10.1007/s10295-005-0059-y CrossRefGoogle Scholar
  137. Masurier N, Estour F, Froment M-T et al (2005) Synthesis of 2-substituted β-cyclodextrin derivatives with a hydrolytic activity against the organophosphorylester paraoxon. Eur J Med Chem 40:615–623. doi: 10.1016/j.ejmech.2005.02.008 CrossRefGoogle Scholar
  138. McDaniel CS, Harper LL, Wild JR (1988) Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase. J Bacteriol 170:2306–2311Google Scholar
  139. Mechrez G, Krepker MA, Harel Y et al (2014) Biocatalytic carbon nanotube paper: a “one-pot” route for fabrication of enzyme-immobilized membranes for organophosphate bioremediation. J Mater Chem B 2:915. doi: 10.1039/c3tb21439g CrossRefGoogle Scholar
  140. Merone L, Mandrich L, Rossi M, Manco G (2005) A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Extremophiles 9:297–305. doi: 10.1007/s00792-005-0445-4 CrossRefGoogle Scholar
  141. Mohamed KA, Basfar AA, Al-Kahtani HA, Al-Hamad KS (2009) Radiolytic degradation of malathion and lindane in aqueous solutions. Radiat Phys Chem 78:994–1000. doi: 10.1016/j.radphyschem.2009.06.003 CrossRefGoogle Scholar
  142. Mondloch JE, Katz MJ, Isley WC III et al (2015) Destruction of chemical warfare agents using metal–organic frameworks. Nat Mater 14:512–516. doi: 10.1038/nmat4238 CrossRefGoogle Scholar
  143. Morris GM, Goodsell DS, Halliday RS et al (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B CrossRefGoogle Scholar
  144. Mulbry WW, Karns JS, Kearney PC et al (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930Google Scholar
  145. Müller S, Koller M, Le Provost R et al (2011) In vitro detoxification of cyclosarin (GF) by modified cyclodextrins. Toxicol Lett 200:53–58. doi: 10.1016/j.toxlet.2010.10.014 CrossRefGoogle Scholar
  146. Muñoz A, Person AL, Calvé SL et al (2011) Studies on atmospheric degradation of diazinon in the EUPHORE simulation chamber. Chemosphere 85:724–730. doi: 10.1016/j.chemosphere.2011.06.044 CrossRefGoogle Scholar
  147. Nakayama K, Ishikawa S, Kawahara K et al (2014) Improvement of organophosphorus hydrolase activity toward nerve agents by amino acid substitutions. Forensic Toxicol. doi: 10.1007/s11419-013-0223-4 Google Scholar
  148. Naqvi T, Warden AC, French N et al (2014) A 5000-fold increase in the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis. PLoS One 9, e94177. doi: 10.1371/journal.pone.0094177 CrossRefGoogle Scholar
  149. National Research Council US (1994) Recommendations for the disposal of chemical agents and munitions. National Academy Press, Washington, DCGoogle Scholar
  150. National Research Council US (1996) Review and evaluation of alternative chemical disposal technologies. National Academy Press, Washington, DCGoogle Scholar
  151. Ningfeng W, Minjie D, Guoyi L et al (2004) Cloning and expression of ophc2, a new organphosphorus hydrolase gene. Chin Sci Bull 49:1245–1249. doi: 10.1360/04wc0146 CrossRefGoogle Scholar
  152. Nowakowska M, Sterzel M, Zapotoczny S, Kot E (2005) Photosensitized degradation of ethyl parathion pesticide in aqueous solution of anthracene modified photoactive dextran. Appl Catal B Environ 57:1–8. doi: 10.1016/j.apcatb.2004.10.002 CrossRefGoogle Scholar
  153. Ohuchi S, Nakamura H, Sligiura H et al (1997) An optical resolution of racemic organophosphorous esters by phosphotriesterase-catalyzing hydrolysis. Appl Biochem Biotechnol 63–65:659–665. doi: 10.1007/BF02920464 CrossRefGoogle Scholar
  154. Organisation for the Prohibition of Chemical Weapons (2005) Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction, 3rd edn. The Technical Secretariat of the Organisation for the Prohibition of Chemical Weapons, HagueGoogle Scholar
  155. Otto TC, Kasten SA, Kovaleva E et al (2010) Purification and characterization of functional human paraoxonase-1 expressed in Trichoplusia ni larvae. Chem Biol Interact 187:388–392. doi: 10.1016/j.cbi.2010.02.022 CrossRefGoogle Scholar
  156. Patel V, Ramasundarahettige C, Vijayakumar L et al (2012) Suicide mortality in India: a nationally representative survey. Lancet 379:2343–2351. doi: 10.1016/S0140-6736(12)60606-0 CrossRefGoogle Scholar
  157. Pearson GS, Magee RS (2002) Critical evaluation of proven chemical weapon destruction technologies (IUPAC Technical Report). Pure Appl Chem 74:187–316Google Scholar
  158. Peterson MW, Fairchild SZ, Otto TC et al (2011) VX Hydrolysis by human serum paraoxonase 1: a comparison of experimental and computational results. PLoS One 6, e20335. doi: 10.1371/journal.pone.0020335 CrossRefGoogle Scholar
  159. Raynes JK, Pearce FG, Meade SJ, Gerrard JA (2011) Immobilization of organophosphate hydrolase on an amyloid fibril nanoscaffold: towards bioremediation and chemical detoxification. Biotechnol Prog 27:360–367. doi: 10.1002/btpr.518 CrossRefGoogle Scholar
  160. Reddy PVL, Kim K-H (2015) A review of photochemical approaches for the treatment of a wide range of pesticides. J Hazard Mater 285:325–335. doi: 10.1016/j.jhazmat.2014.11.036 CrossRefGoogle Scholar
  161. Reddy ST, Wadleigh DJ, Grijalva V et al (2001) Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids. Arterioscler, Thromb, Vasc Biol 21:542–547. doi: 10.1161/01.ATV.21.4.542 CrossRefGoogle Scholar
  162. Richins RD, Kaneva I, Mulchandani A, Chen W (1997) Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol 15:984–987. doi: 10.1038/nbt1097-984 CrossRefGoogle Scholar
  163. Richins RD, Mulchandani A, Chen W (2000) Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes. Biotechnol Bioeng 69:591–596. doi: 10.1002/1097-0290(20000920)69:6<591::AID-BIT2>3.0.CO;2-X CrossRefGoogle Scholar
  164. Rochu D, Chabrière E, Masson P (2007) Human paraoxonase: a promising approach for pre-treatment and therapy of organophosphorus poisoning. Toxicology 233:47–59. doi: 10.1016/j.tox.2006.08.037 CrossRefGoogle Scholar
  165. Roodveldt C, Tawfik DS (2005) Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state. Protein Eng, Des Sel 18:51–58. doi: 10.1093/protein/gzi005 CrossRefGoogle Scholar
  166. Rougier NM, Cruickshank DL, Vico RV et al (2011) Effect of cyclodextrins on the reactivity of fenitrothion. Carbohydr Res 346:322–327. doi: 10.1016/j.carres.2010.06.016 CrossRefGoogle Scholar
  167. Rowland SS, Speedie MK, Pogell BM (1991) Purification and characterization of a secreted recombinant phosphotriesterase (parathion hydrolase) from Streptomyces lividans. Appl Environ Microbiol 57:440–444Google Scholar
  168. Rowland SS, Zulty JJ, Sathyamoorthy M et al (1992) The effect of signal sequences on the efficiency of secretion of a heterologous phosphotriesterase by Streptomyces lividans. Appl Microbiol Biotechnol 38:94–100. doi: 10.1007/BF00169426 CrossRefGoogle Scholar
  169. Sambrook MR, Notman S (2013) Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing. Chem Soc Rev 42:9251. doi: 10.1039/c3cs60230c CrossRefGoogle Scholar
  170. Scharff EI, Koepke J, Fritzsch G et al (2001a) Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris. Structure 9:493–502. doi: 10.1016/S0969-2126(01)00610-4 CrossRefGoogle Scholar
  171. Scharff EI, Lücke C, Fritzsch G et al (2001b) Crystallization and preliminary X-ray crystallographic analysis of DFPase from Loligo vulgaris. Acta Crystallogr D Biol Crystallogr 57:148–149. doi: 10.1107/S0907444900014232 CrossRefGoogle Scholar
  172. Schofield DA, DiNovo AA (2010) Generation of a mutagenized organophosphorus hydrolase for the biodegradation of the organophosphate pesticides malathion and demeton-S. J Appl Microbiol. doi: 10.1111/j.1365-2672.2010.04672.x Google Scholar
  173. Schomburg PDD, Stephan DD (1998) Aryldialkylphosphatase. In: Schomburg PDD, Stephan DD (eds) Enzyme handbook 15. Springer, Berlin, pp 201–206Google Scholar
  174. Scott SH, Bahnson BJ (2011) Senescence marker protein 30: functional and structural insights to its unknown physiological function. Biomol Concepts 2:469–480Google Scholar
  175. Segal-Rosenheimer M, Dubowski Y (2010) Photolysis of methyl-parathion thin films: products, kinetics and quantum yields under different atmospheric conditions. J Photochem Photobiol Chem 209:193–202. doi: 10.1016/j.jphotochem.2009.11.014 CrossRefGoogle Scholar
  176. Seibert CM, Raushel FM (2005) Structural and catalytic diversity within the amidohydrolase superfamily†. Biochemistry (Mosc) 44:6383–6391. doi: 10.1021/bi047326v CrossRefGoogle Scholar
  177. Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44:246–249Google Scholar
  178. Sethunathan N, Yoshida T (1973) A Flavobacterium sp. that degrades diazinon and parathion. Can J Microbiol 19:873–875. doi: 10.1139/m73-138 CrossRefGoogle Scholar
  179. Shen Y, Lu P, Mei H et al (2010) Isolation of a methyl parathion-degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegradation 21:785–792. doi: 10.1007/s10532-010-9343-2 CrossRefGoogle Scholar
  180. Sinderhauf K, Schwack W (2003) Photolysis experiments on phosmet, an organophosphorus insecticide. J Agric Food Chem 51:5990–5995. doi: 10.1021/jf034253y CrossRefGoogle Scholar
  181. Singh B, Prasad GK, Pandey KS et al (2010) Decontamination of chemical warfare agents (review article). Def Sci J 60:428–441. doi: 10.14429/dsj.60.487 CrossRefGoogle Scholar
  182. Sode K, Nakamura H (1997) Compatibility of phosphotriesterase from Flavobacterium sp. with detergents. Biotechnol Lett 19:1239–1242. doi: 10.1023/A:1018402407802 CrossRefGoogle Scholar
  183. Steiert JG, Pogell BM, Speedie MK, Laredo J (1989) A gene coding for a membrane-bound hydrolase is expressed as a secreted, soluble enzyme in Streptomyces lividans. Nat Biotechnol 7:65–68. doi: 10.1038/nbt0189-65 CrossRefGoogle Scholar
  184. Štěpánková A, Dušková J, Skálová T et al (2013) Organophosphorus acid anhydrolase from Alteromonas macleodii: structural study and functional relationship to prolidases. Acta Crystallograph Sect F Struct Biol Cryst Commun 69:346–354. doi: 10.1107/S1744309113002674 CrossRefGoogle Scholar
  185. Suthiwangcharoen N, Nagarajan R (2014) Enhancing enzyme stability by construction of polymer–enzyme conjugate micelles for decontamination of organophosphate agents. Biomacromolecules 15:1142–1152. doi: 10.1021/bm401531d CrossRefGoogle Scholar
  186. Szinicz L (2005) History of chemical and biological warfare agents. Toxicology 214:167–181. doi: 10.1016/j.tox.2005.06.011 CrossRefGoogle Scholar
  187. Taysse L, Daulon S, Delamanche S et al (2007) Skin decontamination of mustards and organophosphates: comparative efficiency of RSDL and Fuller’s earth in domestic swine. Hum Exp Toxicol 26:135–141CrossRefGoogle Scholar
  188. Theriot CM, Grunden AM (2010) Hydrolysis of organophosphorus compounds by microbial enzymes. Appl Microbiol Biotechnol 89:35–43. doi: 10.1007/s00253-010-2807-9 CrossRefGoogle Scholar
  189. Theriot CM, Tove SR, Grunden AM (2009) Characterization of two proline dipeptidases (prolidases) from the hyperthermophilic archaeon Pyrococcus horikoshii. Appl Microbiol Biotechnol 86:177–188. doi: 10.1007/s00253-009-2235-x CrossRefGoogle Scholar
  190. Theriot CM, Du X, Tove SR, Grunden AM (2010) Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures. Appl Microbiol Biotechnol 87:1715–1726. doi: 10.1007/s00253-010-2614-3 CrossRefGoogle Scholar
  191. Theriot CM, Semcer RL, Shah SS, Grunden AM (2011) Improving the catalytic activity of hyperthermophilic Pyrococcus horikoshii prolidase for detoxification of organophosphorus nerve agents over a broad range of temperatures. Archaea 2011, e565127. doi: 10.1155/2011/565127 CrossRefGoogle Scholar
  192. Tokuriki N, Tawfik DS (2009) Stability effects of mutations and protein evolvability. Curr Opin Struct Biol 19:596–604. doi: 10.1016/ CrossRefGoogle Scholar
  193. Tucker M (2014) Reduced weight decontamination formulation for neutralization of chemical and biological warfare agents. Patent US 8,741,174 B1.Google Scholar
  194. Tucker M, Comstock R (2004) Decontamination formulation with sorbent additive. Patent US 2004/0022867 A1.Google Scholar
  195. Tucker M, Engler D (2005) Decontamination formulations for disinfection and sterilization. Patent US 2005/0109981 A1.Google Scholar
  196. Tuorinsky SD, Caneva DC, Sidell FR (2009) Triage of chemical casualties. In: Chemical aspects of chemical warfare. Walter Reed Army Medical Center Borden Institute, Washington DC, pp 511–526Google Scholar
  197. Vanhooke JL, Benning MM, Raushel FM, Holden HM (1996) Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate. Biochemistry (Mosc) 35:6020–6025. doi: 10.1021/bi960325l CrossRefGoogle Scholar
  198. Vecchio P, Elias M, Merone L et al (2009) Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles 13:461–470. doi: 10.1007/s00792-009-0231-9 CrossRefGoogle Scholar
  199. Vyas NK, Nickitenko A, Rastogi VK et al (2010) Structural insights into the dual activities of the nerve agent degrading organophosphate anhydrolase/prolidase. Biochemistry (Mosc) 49:547–559. doi: 10.1021/bi9011989 CrossRefGoogle Scholar
  200. Wales ME, Reeves TE (2012) Organophosphorus hydrolase as an in vivo catalytic nerve agent bioscavenger. Drug Test Anal 4:271–281. doi: 10.1002/dta.381 CrossRefGoogle Scholar
  201. Wan HB, Wong MK, Mok CY (1994) Comparative study on the quantum yields of direct photolysis of organophosphorus pesticides in aqueous solution. J Agric Food Chem 42:2625–2630. doi: 10.1021/jf00047a046 CrossRefGoogle Scholar
  202. Wang S-H, Liu M, Chi M-G et al (2004) Production of human liver prolidase by Saccharomyces cerevisiae as host cells. Acta Pharmacol Sin 25:794–800Google Scholar
  203. Wang SH, Zhi QW, Sun MJ (2006) Dual activities of human prolidase. Toxicol In Vitro 20:71–77. doi: 10.1016/j.tiv.2005.06.003 CrossRefGoogle Scholar
  204. Watkins LM, Mahoney HJ, McCulloch JK, Raushel FM (1997) Augmented hydrolysis of diisopropyl fluorophosphate in engineered mutants of phosphotriesterase. J Biol Chem 272:25596–25601. doi: 10.1074/jbc.272.41.25596 CrossRefGoogle Scholar
  205. Wille T, Tenberken O, Reiter G et al (2009) Detoxification of nerve agents by a substituted β-cyclodextrin: application of a modified biological assay. Toxicology 265:96–100. doi: 10.1016/j.tox.2009.09.018 CrossRefGoogle Scholar
  206. Wille T, Scott C, Thiermann H, Worek F (2012) Detoxification of G- and V-series nerve agents by the phosphotriesterase OpdA. Biocatal Biotransformation 30:203–208. doi: 10.3109/10242422.2012.661724 CrossRefGoogle Scholar
  207. Wu C, Linden KG (2010) Phototransformation of selected organophosphorus pesticides: roles of hydroxyl and carbonate radicals. Water Res 44:3585–3594. doi: 10.1016/j.watres.2010.04.011 CrossRefGoogle Scholar
  208. Xiang DF, Kolb P, Fedorov AA et al (2009) Functional annotation and three-dimensional structure of Dr0930 from Deinococcus radiodurans, a close relative of phosphotriesterase in the amidohydrolase superfamily†‡. Biochemistry (Mosc) 48:2237–2247. doi: 10.1021/bi802274f CrossRefGoogle Scholar
  209. Xie J, Zhao Y, Zhang H et al (2014) Improving methyl parathion hydrolase to enhance its chlorpyrifos-hydrolysing efficiency. Lett Appl Microbiol 58:53–59. doi: 10.1111/lam.12155 CrossRefGoogle Scholar
  210. Yang Y-C (1999) Chemical detoxification of nerve agent VX. Acc Chem Res 32:109–115. doi: 10.1021/ar970154s CrossRefGoogle Scholar
  211. Yang J, Yang C, Jiang H, Qiao C (2008) Overexpression of methyl parathion hydrolase and its application in detoxification of organophosphates. Biodegradation 19:831–839. doi: 10.1007/s10532-008-9186-2 CrossRefGoogle Scholar
  212. Yeung DT, Josse D, Nicholson JD et al (2004) Structure/function analyses of human serum paraoxonase (HuPON1) mutants designed from a DFPase-like homology model. Biochim Biophys Acta BBA - Proteins Proteomics 1702:67–77. doi: 10.1016/j.bbapap.2004.08.002 CrossRefGoogle Scholar
  213. Zhang R, Cui Z, Zhang X et al (2006) Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation 17:465–472. doi: 10.1007/s10532-005-9018-6 CrossRefGoogle Scholar
  214. Zhang Y, An J, Ye W et al (2012) Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides. Appl Environ Microbiol 78:6647–6655. doi: 10.1128/AEM.01122-12 CrossRefGoogle Scholar
  215. Zhongli C, Shunpeng L, Guoping F (2001) Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925. doi: 10.1128/AEM.67.10.4922-4925.2001 CrossRefGoogle Scholar
  216. Zuo G-M, Cheng Z-X, Li G-W et al (2007) Study on photolytic and photocatalytic decontamination of air polluted by chemical warfare agents (CWAs). Chem Eng J 128:135–140. doi: 10.1016/j.cej.2006.10.006 CrossRefGoogle Scholar
  217. Zwiener RJ, Ginsburg CM (1988) Organophosphate and carbamate poisoning in infants and children. Pediatrics 81:121–126Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pauline Jacquet
    • 1
  • David Daudé
    • 2
  • Janek Bzdrenga
    • 1
  • Patrick Masson
    • 3
  • Mikael Elias
    • 4
  • Eric Chabrière
    • 1
    Email author
  1. 1.Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095MarseilleFrance
  2. 2.Gene&GreenTK, Faculté de MédecineMarseilleFrance
  3. 3.Neuropharmacology LaboratoryKazan Federal UniversityKazanRussia
  4. 4.Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology InstituteUniversity of MinnesotaSt. PaulUSA

Personalised recommendations