Skip to main content
Log in

Application of Faecalibacterium 16S rDNA genetic marker for accurate identification of duck faeces

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this study was to judge the legal duty of pollution liabilities by assessing a duck faeces-specific marker, which can exclude distractions of residual bacteria from earlier contamination accidents. With the gene sequencing technology and bioinformatics method, we completed the comparative analysis of Faecalibacterium sequences, which were associated with ducks and other animal species, and found the sequences unique to duck faeces. Polymerase chain reaction (PCR) and agarose gel electrophoresis techniques were used to verify the reliability of both human and duck faeces-specific primers. The duck faeces-specific primers generated an amplicon of 141 bp from 43.3 % of duck faecal samples, 0 % of control samples and 100 % of sewage wastewater samples that contained duck faeces. We present here the initial evidence of Faecalibacterium-based applicability as human faeces-specificity in China. Meanwhile, this study represents the initial report of a Faecalibacterium marker for duck faeces and suggests an independent or supplementary environmental biotechnology of microbial source tracking (MST).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186:2629–2635. doi:10.1128/JB.186.9.2629-2635.2004

    Article  CAS  Google Scholar 

  • Ahmed W, Neller R, Katouli M (2005) Host species-specific metabolic fingerprint database for enterococci and Escherichia coli and its application to identify sources of fecal contamination in surface waters. Appl Environ Microbiol 71:4461–4468. doi:10.1128/AEM.71.8.4461-4468.2005

    Article  CAS  Google Scholar 

  • Ahmed W, Stewart J, Gardner T et al (2007) Sourcing faecal pollution: a combination of library-dependent and library-independent methods to identify human faecal pollution in non-sewered catchments. Water Res 41:3771–3779. doi:10.1016/j.watres.2007.02.051

    Article  CAS  Google Scholar 

  • Ballot A, Dadheech PK, Krienitz L (2004) Phylogenetic relationship of Arthrospira, Phormidium and Spirulina strains from Kenyan and Indian waterbodies. Algol Stud 113:37–56. doi:10.1127/1864-1318/2004/0113-0037

    Article  Google Scholar 

  • Ben-Dov E, Shapiro OH, Siboni N, Kushmaro A (2006) Advantage of using Inosine at the 3′ termini of 16S rRNA gene universal primers for the study of microbial diversity. Appl Environ Microbiol 72:6902–6906. doi:10.1128/AEM.00849-06

    Article  CAS  Google Scholar 

  • Benenson AS (ed) (1995) Control of communicable diseases manual, 16th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Bian G, Xie F, Su Y, Zhu W (2010) 16S rRNA gene-based molecular methods to monitor Clostridium cluster IV community in the colon of piglets. ACTA Microbiol Sin 50:1373–1379. doi:10.13343/j.cnki.wsxb.2010.10.017

    CAS  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V et al (2009) BLAST plus: architecture and applications. BMC Bioinforma 10:421. doi:10.1186/1471-2105-10-421

    Article  Google Scholar 

  • Carson CA, Christiansen JM, Yampara-Iquise H et al (2005) Specificity of a Bacteroides thetaiotaomicron marker for human feces. Appl Environ Microbiol 71:4945–4949. doi:10.1128/AEM.71.8.4945-4949.2005

    Article  CAS  Google Scholar 

  • Charles H, Anicet RB (2011) Microbial source tracking: methods, applications, and case studies. Springer, New York

    Google Scholar 

  • Cole JR (2004) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296. doi:10.1093/nar/gki038

    Article  Google Scholar 

  • Craun GF, Calderon RL, Craun MF et al (2004) Waterborne outbreaks caused by zoonotic pathogens in the USA. In: Gannon VPG (ed). IWA Publishing, London, pp 120–135

    Google Scholar 

  • Dick LK, Bernhard AE, Brodeur TJ et al (2005) Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl Environ Microbiol 71:3184–3191. doi:10.1128/AEM.71.6.3184-3191.2005

    Article  CAS  Google Scholar 

  • Dombek PE, Johnson LK, Zimmerley ST, Sadowsky MJ (2000) Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Appl Environ Microbiol 66:2572–2577. doi:10.1128/AEM.66.6.2572-2577.2000

    Article  CAS  Google Scholar 

  • Duan C, Liu A, Wang G et al (2013) Research progress of using intestinal microbes to track the sources of fecal pollution in surface water. Microbiol China 40:2319–2329. doi:10.13344/j.microbiol.china.2013.12.014

    Google Scholar 

  • Edwards U, Rogall T, Blocker H et al (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853. doi:10.1093/nar/17.19.7843

    Article  CAS  Google Scholar 

  • Field KG, Samadpour M (2007) Fecal source tracking, the indicator paradigm, and managing water quality. Water Res 41:3517–3538. doi:10.1016/j.watres.2007.06.056

    Article  CAS  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063. doi:10.1126/science.1070710

    Article  CAS  Google Scholar 

  • Foditsch C, Santos TMA, Teixeira AGV et al (2014) Isolation and characterization of Faecalibacterium prausnitzii from calves and piglets. PLoS One 9:e116465. doi:10.1371/journal.pone.0116465

    Article  Google Scholar 

  • Fu L-L, Shuai J-B, Wang Y et al (2011) Temporal genetic variability and host sources of Escherichia coli associated with fecal pollution from domesticated animals in the shellfish culture environment of Xiangshan Bay, East China Sea. Environ Pollut 159:2808–2814. doi:10.1016/j.envpol.2011.05.014

    Article  CAS  Google Scholar 

  • Garcia-Mazcorro JF, Dowd SE, Poulsen J et al (2012) Abundance and short-term temporal variability of fecal microbiota in healthy dogs. Microbiologyopen 1:340–347. doi:10.1002/mbo3.36

    Article  Google Scholar 

  • Garrity GM, Julia A, Lilburn B, Lilburn T (2005) The revised road map to the manual. In: In Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 159–194

    Chapter  Google Scholar 

  • Gordon KV, Brownell M, Wang SY et al (2013) Relationship of human-associated microbial source tracking markers with Enterococci in Gulf of Mexico waters. Water Res 47:996–1004. doi:10.1016/j.watres.2012.10.032

    Article  CAS  Google Scholar 

  • Hagedorn C, Robinson SL, Filtz JR et al (1999) Determining sources of fecal pollution in a rural Virginia watershed with antibiotic resistance patterns in fecal streptococci. Appl Environ Microbiol 65:5522–5531

    CAS  Google Scholar 

  • Hamilton MJ, Yan T, Sadowsky MJ (2006) Development of goose- and duck-specific DNA markers to determine sources of Escherichia coli in waterways. Appl Environ Microbiol 72:4012–4019. doi:10.1128/AEM.02764-05

    Article  CAS  Google Scholar 

  • Hanseni DL, Clark JJ, Ishii S et al (2008) Sources and sinks of Escherichia coli in benthic and pelagic fish. J Gt Lakes Res 34:228–234. doi:10.3394/0380-1330(2008)34[228:SASOEC]2.0.CO;2

    Article  Google Scholar 

  • Henaux V, Samuel MD (2011) Avian influenza shedding patterns in waterfowl: implications for surveillance, environmental transmission, and disease spread. J Wildl Dis 47:566–578

    Article  Google Scholar 

  • Hietala SK, Crossley BM (2006) Armored RNA as virus surrogate in a real-time reverse transcriptase PCR assay proficiency panel. J Clin Microbiol 44:67–70. doi:10.1128/JCM.44.1.67-70.2006

    Article  CAS  Google Scholar 

  • Ibekwe AM, Leddy M, Murinda SE (2013) Potential human pathogenic bacteria in a mixed urban watershed as revealed by pyrosequencing. Plos One 8, e79490. doi:10.1371/journal.pone.0079490

    Article  Google Scholar 

  • Jeong J-Y, Park H-D, Lee K-H et al (2011) Microbial community analysis and identification of alternative host-specific fecal indicators in fecal and river water samples using pyrosequencing. J Microbiol 49:585–594. doi:10.1007/s12275-011-0530-6

    Article  Google Scholar 

  • Jiang SC, Chu W, Olson BH et al (2007) Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria. Appl Microbiol Biotechnol 76:927–934. doi:10.1007/s00253-007-1047-0

    Article  CAS  Google Scholar 

  • Kapoor V, Smith C, Domingo JWS et al (2013) Correlative assessment of fecal indicators using human mitochondria! DNA as a direct marker. Environ Sci Technol 47:10485–10493. doi:10.1021/es4020458

    CAS  Google Scholar 

  • Kobayashi A, Sano D, Hatori J et al (2013) Chicken- and duck-associated Bacteroides-Prevotella genetic markers for detecting fecal contamination in environmental water. Appl Microbiol Biotechnol 97:7427–7437. doi:10.1007/s00253-012-4469-2

    Article  CAS  Google Scholar 

  • Lauber CL, Zhou N, Gordon JI et al (2010) Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. Fems Microbiol Lett 307:80–86. doi:10.1111/j.1574-6968.2010.01965.x

    Article  CAS  Google Scholar 

  • Leng G, Dan D (2009) Technology progresses of livestock and poultry wastewater treatment and their application. SICHUAN Environ 28:68–72. doi:10.3969/j.issn.1001-3644.2009.01.019

    Google Scholar 

  • Ley RE, Hamady M, Lozupone C et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651. doi:10.1126/science.1155725

    Article  CAS  Google Scholar 

  • Ma H-J, Fu L-L, Li J-R (2011) Differentiation of fecal Escherichia coli from human, livestock, and poultry sources by rep-PCR DNA fingerprinting on the shellfish culture area of East China Sea. Curr Microbiol 62:1423–1430. doi:10.1007/s00284-011-9870-z

    Article  CAS  Google Scholar 

  • Moce-Llivina L, Lucena F, Jofre J (2005) Enteroviruses and Bacteriophages in bathing waters. Appl Environ Microbiol 71:6838–6844. doi:10.1128/AEM.71.11.6838-6844.2005

    Article  CAS  Google Scholar 

  • Mohapatra BR, Broersma K, Mazumder A (2008) Differentiation of fecal Escherichia coli from poultry and free-living birds by (GTG)(5)-PCR genomic fingerprinting. Int J Med Microbiol 298:245–252. doi:10.1016/j.ijmm.2007.03.019

    Article  CAS  Google Scholar 

  • Murphy J, Devane ML, Robson B, Gilpin BJ (2005) Genotypic characterization of bacteria cultured from duck faeces. J Appl Microbiol 99:301–309. doi:10.1111/j.1365-2672.2005.02590.x

    Article  CAS  Google Scholar 

  • Myoda S, Carson C, Fuhrmann J et al (2003) Comparison of genotypic-based microbial source tracking methods requiring a host origin database. J Water Health 1:167–180

    Google Scholar 

  • Oakley BB, Morales CA, Line J et al (2013) The poultry-associated microbiome: network analysis and farm-to-fork characterizations. PLoS One 8, e57190. doi:10.1371/journal.pone.0057190

    Article  CAS  Google Scholar 

  • Oikonomou G, Teixeira AGV, Foditsch C et al (2013) Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. Plos One 8:UNSP–e63157. doi:10.1371/journal.pone.0063157

    Article  Google Scholar 

  • Okhuysen PC, Chappell CL, Crabb JH et al (1999) Virulence of three distinct Cryptospovidium parvum isolates for healthy adults. In: Journal of infectious diseases. UNIV CHICAGO PRESS, SAN FRANCISCO, CALIFORNIA, pp 1275–1281

    Google Scholar 

  • Pace NR (1999) Phylogenetic structure of prokaryotic domain—the primary kingdoms. Microbiol Centen Perspect 74:440. doi:10.1073/pnas.74.11.5088

    Google Scholar 

  • Parveen S, Portier KM, Robinson K et al (1999) Discriminant analysis of ribotype profiles of Escherichia coli for differentiating human and nonhuman sources of fecal pollution. Appl Environ Microbiol 65:3142–3147

    CAS  Google Scholar 

  • Peng L (2009) A Study on the suitable load and the emporai and spatial distribution of emissions of livestock and poultry manure in Chongqing. Southwest University, PhD dissertation

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Pruimboom-Brees IM, Morgan TW, Ackermann MR et al (2000) Cattle lack vascular receptors for Escherichia coli O157: H7 Shiga toxins. Proc Natl Acad Sci U S A 97:10325–10329. doi:10.1073/pnas.190329997

    Article  CAS  Google Scholar 

  • Santo Domingo JW, Bambic DG, Edge TA, Wuertz S (2007a) Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution. Water Res 41:3539–3552. doi:10.1016/j.watres.2007.06.001

    Article  CAS  Google Scholar 

  • Santo Domingo JW, Sadowsky MJ, Doyle MP (2007b) Microbial source tracking. American Society of Microbiology, Minnesota

    Google Scholar 

  • Savichtcheva O, Okabe S (2006) Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Res 40:2463–2476. doi:10.1016/j.watres.2006.04.040

    Article  CAS  Google Scholar 

  • Shanks OC, Kelty CA, Archibeque S et al (2011) Community structures of fecal bacteria in cattle from different animal feeding operations. Appl Environ Microbiol 77:2992–3001. doi:10.1128/AEM.02988-10

    Article  CAS  Google Scholar 

  • Shen Z, Duan C, Zhang C et al (2013) Using an intervening sequence of Faecalibacterium 16S rDNA to identify poultry feces. Water Res 47:6415–6422. doi:10.1016/j.watres.2013.08.013

    Article  Google Scholar 

  • Sokol H, Pigneur B, Watterlot L et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736. doi:10.1073/pnas.0804812105

    Article  CAS  Google Scholar 

  • Stoeckel DM, Harwood VJ (2007) Performance, design, and analysis in microbial source tracking studies. Appl Environ Microbiol 73:2405–2415. doi:10.1128/AEM.02473-06

    Article  CAS  Google Scholar 

  • Szewzyk U, Szewzyk R, Manz W, Schleifer KH (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127. doi:10.1146/annurev.micro.54.1.81

    Article  CAS  Google Scholar 

  • Terry E (2010) Asia dominates world waterfowl production. Poult. Site, In, http://www.thepoultrysite.com/articles/1633/asia-dominates-world-waterfowl-production/

    Google Scholar 

  • Wiggins BA, Cash PW, Creamer WS et al (2003) Use of antibiotic resistance analysis for representativeness testing of multiwatershed libraries. Appl Environ Microbiol 69:3399–3405. doi:10.1128/AEM.69.6.3399-3405.2003

    Article  CAS  Google Scholar 

  • Yampara-Iquise H, Zheng G, Jones JE, Carson CA (2008) Use of a Bacteroides thetaiotaomicron -specific α-1-6, mannanase quantitative PCR to detect human faecal pollution in water. J Appl Microbiol 105:1686–1693. doi:10.1111/j.1365-2672.2008.03895.x

    Article  CAS  Google Scholar 

  • Yan T, Sadowsky MJ (2007) Determining sources of fecal bacteria in waterways. Environ Monit Assess 129:97–106. doi:10.1007/s10661-006-9426-z

    Article  CAS  Google Scholar 

  • Yan T, Hamilton MJ, Sadowsky MJ (2007) High-throughput and quantitative procedure for determining sources of Escherichia coli in waterways by using host-specific DNA marker genes. Appl Environ Microbiol 73:890–896. doi:10.1128/AEM.01395-06

    Article  CAS  Google Scholar 

  • Zheng G, Yampara-Iquise H, Jones JE, Andrew Carson C (2009) Development of Faecalibacterium 16S rRNA gene marker for identification of human faeces. J Appl Microbiol 106:634–641. doi:10.1111/j.1365-2672.2008.04037.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Science and Technology Supporting Program of China (Grant Nos. 2012BAJ25B06 and 2012BAJ25B09), the National Natural Science Foundation of China (Grant No. 51208533), the Fundamental Research Funds for the Central Universities (Grant No. 106112015CDJZR235504), a sub-topic from the National Water Pollution Control and Management Technology Major Projects of China (2008ZX07425-003-01) as well as the Chongqing Engineering Laboratory in Vascular Implants, the National ‘111 Plan’ Base (B06023) and the Public Experiment Center of State Bioindustrial Base (Chongqing), China. We also thank Mrs Baoyun Zhang, Aixi Liu and Lei Nie from Chongqing University for their efforts in the early stages of this study, and Mr. Sheng Zhong from National Urban Water Quality Monitoring Network Stations at Chongqing for providing most samples of the water source.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanren Duan or Guixue Wang.

Ethics declarations

We certify that this manuscript is original and has not been published and will not be submitted elsewhere for publication while being considered by Environmental Science and Pollution Research. And the study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time. No data have been fabricated or manipulated (including images) to support your conclusions. No data, text or theories by others are presented as if they were our own.

The submission has been received explicitly from all co-authors. And authors whose names appear on the submission have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results.

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Responsible editor: Robert Duran

Da Sun and Chuanren Duan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Duan, C., Shang, Y. et al. Application of Faecalibacterium 16S rDNA genetic marker for accurate identification of duck faeces. Environ Sci Pollut Res 23, 7639–7647 (2016). https://doi.org/10.1007/s11356-015-6024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-6024-z

Keywords

Navigation