Environmental Science and Pollution Research

, Volume 23, Issue 8, pp 7504–7516

Fractionation and leachability of heavy metals from aged and recent Zn metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil)

  • Manivannan Sethurajan
  • David Huguenot
  • Piet N. L. Lens
  • Heinrich A. Horn
  • Luiz H. A. Figueiredo
  • Eric D. van Hullebusch
Research Article


Various mineral processing operations to produce pure metals from mineral ores generate sludges, residues, and other unwanted by-products/wastes. As a general practice, these wastes are either stored in a reservoir or disposed in the surrounding of mining/smelting areas, which might cause adverse environmental impacts. Therefore, it is important to understand the various characteristics like heavy metal leaching features and potential toxicity of these metallurgical wastes. In this study, zinc plant leach residues (ZLRs) were collected from a currently operating Zn metallurgical industry located in Minas Gerais (Brazil) and investigated for their potential toxicity, fractionation, and leachability. Three different ZLR samples (ZLR1, ZLR2, and ZLR3) were collected, based on their age of production and deposition. They mainly consisted of Fe (6–11.5 %), Zn (2.5 to 5.0 %), and Pb (1.5 to 2.5 %) and minor concentrations of Al, Cd, Cu, and Mn, depending on the sample age. Toxicity Characteristic Leaching Procedure (TCLP) results revealed that these wastes are hazardous for the environment. Accelerated Community Bureau of Reference (BCR) sequential extraction clearly showed that potentially toxic heavy metals such as Cd, Cu, Pb, and Zn can be released into the environment in high quantities under mild acidic conditions. The results of the liquid-solid partitioning as a function of pH showed that pH plays an important role in the leachability of metals from these residues. At low pH (pH 2.5), high concentrations of metals can be leached: 67, 25, and 7 % of Zn can be leached from leach residues ZLR1, ZLR2, and ZLR3, respectively. The release of metals decreased with increasing pH. Geochemical modeling of the pH-dependent leaching was also performed to determine which geochemical process controls the leachability/solubility of the heavy metals. This study showed that the studied ZLRs contain significant concentrations of non-residual extractable fractions of Zn and can be seen as a potential secondary resource for Zn.


Geochemical modeling Metal fractionation pH stat leaching TCLP Zinc plant leach residues 

Supplementary material

11356_2015_6014_MOESM1_ESM.docx (908 kb)
ESM 1(DOCX 908 kb)


  1. ABNT (Associacão Brasileira de Normas Técnicas), Resíduos Sólidos- Classificac¸ ão, NBR 10004, Rio de Janeiro, RJ, Brasil (2004). http://www.aslaa.com.br/legislacoes/NBR%20n%(2010)004-(2004).pdf (ABNT, N. ((2004)). 10004: (2004). Resíduos sólidos. Classificação.) (in portuguese)
  2. Al-Abed SR, Hageman PL, Jegadeesan G, Madhavan N, Allen D (2006) Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste. Sci Total Environ 364(1):14–23. doi:10.1016/j.scitotenv.(2005).10.021 CrossRefGoogle Scholar
  3. Al-Abed SR, Jegadeesan G, Purandare J, Allen D (2007) Arsenic release from iron rich mineral processing waste: influence of pH and redox potential. Chemosphere 66:775–782. doi:10.1016/j.chemosphere.(2006).07.045 CrossRefGoogle Scholar
  4. Al-Abed SR, Jegadeesan G, Purandare J, Allen D (2008) Leaching behavior of mineral processing waste: comparison of batch and column investigations. J Hazard Mater 153(3):1088–1092. doi:10.1016/j.jhazmat.(2007).09.063 CrossRefGoogle Scholar
  5. Al-Jabri KS, Taha RA, Al-Hashmi A, Al-Harthy AS (2006) Effect of copper slag and cement by-pass dust addition on mechanical properties of concrete. Constr Build Mater 20(5):322–331. doi:10.1016/j.conbuildmat.2005.01.020 CrossRefGoogle Scholar
  6. Altundogan HS, Erdem M, Orhan R, Ozer A, Turnen F (1998) Heavy metal pollution potential of zinc leach residues discarded in Çinkur plant. Turk J Eng Environ Sci 22:167–177Google Scholar
  7. Astrup T, Mosbæk H, Christensen TH (2006) Assessment of long-term leaching from waste incineration air-pollution-control residues. Waste Manag 26(8):803–814. doi:10.1016/j.wasman.(2005).12.008 CrossRefGoogle Scholar
  8. Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? Analyst 133(1):25–46. doi:10.1039/B711896A CrossRefGoogle Scholar
  9. Bataillard P, Cambier P, Picot C (2003) Short‐term transformations of lead and cadmium compounds in soil after contamination. Eur J Soil Sci 542:365–376. doi:10.1046/j.1365-2389.(2003).00527.x CrossRefGoogle Scholar
  10. Cappuyns V, Swennen R (2008) “Acid extractable” metal concentrations in solid matrices: a comparison and evaluation of operationally defined extraction procedures and leaching tests. Talanta 75(5):1338–1347. doi:10.1016/j.talanta.2008.01.047 CrossRefGoogle Scholar
  11. Chen M, Ma LQ (2001) Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Sci Soc Am J 65(2):491–499. doi:10.2136/sssaj(2001).652491x CrossRefGoogle Scholar
  12. Clevenger TE (1990) Use of sequential extraction to evaluate the heavy metals in mining wastes. Water Air Soil Pollut 50(3-4):241–254. doi:10.1007/BF00280626 CrossRefGoogle Scholar
  13. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 143:454–458. doi:10.4319/lo.1969.14.3.0454 CrossRefGoogle Scholar
  14. Çoruh S, Ergun ON (2010) Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste. J Hazard Mater 173(1):468–473. doi:10.1016/j.jhazmat.2009.08.108 CrossRefGoogle Scholar
  15. Creedy S, Glinin A, Matusewicz R, Hughes S, Reuter M (2013) Ausmelt technology for treating zinc residues. World Metall-ERZMETALL 66:230–235Google Scholar
  16. Dang Z, Liu C, Haigh MJ (2002) Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environ Pollut 118(3):419–426. doi:10.1016/S0269-7491(01)00285-8 CrossRefGoogle Scholar
  17. Dijkstra JJ, van der Sloot HA, Comans RN (2006) The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Appl Geochem 21(2):335–351. doi:10.1016/j.apgeochem.(2005).11.003 CrossRefGoogle Scholar
  18. Dold B (2003) Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J Geochem Explor 80(1):55–68. doi:10.1016/S0375-6742(03)00182-1 CrossRefGoogle Scholar
  19. Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4(6):823–857. doi:10.1039/B207574C CrossRefGoogle Scholar
  20. Greeberg AE, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and wastewater. Am Public Health Assoc 21:4–134Google Scholar
  21. Guo ZH, Pan FK, Xiao XY, Zhang L, Jiang KQ (2010) Optimization of brine leaching of metals from hydrometallurgical residue. Trans Nonferrous Metal Soc China 20(10):2000–2005. doi:10.1016/S1003-6326(09)60408-8 CrossRefGoogle Scholar
  22. Gustafsson JP (2012) Visual Minteq, a free equilibrium speciation model. KTH, Department of Land and Water Resources EngineeringGoogle Scholar
  23. Hollagh ARE, Alamdari EK, Moradkhani D, Salardini AA (2013) Kinetic analysis of isothermal leaching of zinc from zinc plant residue. Int J Nonferrous Metall 2:10–20. doi:10.4236/ijnm.(2013).21002 CrossRefGoogle Scholar
  24. Ipolyi I, Brunori C, Cremisini C, Fodor P, Macaluso L, Morabito R (2002) Evaluation of performance of time-saving extraction devices in the BCR three-step sequential extraction procedure. J Environ Monit 4(4):541–548. doi:10.1039/b202018c CrossRefGoogle Scholar
  25. Jang YC, Townsend TG (2003) Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates. Environ Sci Technol 37(20):4778–4784. doi:10.1021/es034155t CrossRefGoogle Scholar
  26. Jha MK, Kumar V, Singh RJ (2001) Review of hydrometallurgical recovery of zinc from industrial wastes. Resour Conserv Recycl 33:1–22. doi:10.1016/S0921-3449(00)00095-1 CrossRefGoogle Scholar
  27. Johnson DB (2009) Extremophiles: acid environments. Encyclopedia of Microbiology. In Schaechter M (ed). Elsevier, p 107–126Google Scholar
  28. Kachur AN, Arzhanova VS, Yelpatyevsky PV, von Braun MC, von Lindern IH (2003) Environmental conditions in the Rudnaya River watershed—a compilation of Soviet and post-Soviet era sampling around a lead smelter in the Russian Far East. Sci Total Environ 303:171–185. doi:10.1016/S0048-9697(02)00351-0 CrossRefGoogle Scholar
  29. Ke Y, Chai LY, Min XB, Tang CJ, Chen J, Wang Y, Liang YJ (2014) Sulfidation of heavy-metal-containing neutralization sludge using zinc leaching residue as the sulfur source for metal recovery and stabilization. Miner Eng 61:105–112. doi:10.1016/j.mineng.(2014).03.022 CrossRefGoogle Scholar
  30. Li M, Peng B, Chai LY, Peng N, Xie XD, Yan H (2013) Technological mineralogy and environmental activity of zinc leaching residue from zinc hydrometallurgical process. Trans Nonferrous Metal Soc China 235:1480–1488. doi:10.1016/S1003-6326(13)62620-5 CrossRefGoogle Scholar
  31. Lottermoser B (2010) Mine wastes. Springer, BerlinCrossRefGoogle Scholar
  32. Marguí E, Salvadó V, Queralt I, Hidalgo M (2004) Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes. Anal Chim Acta 524(1):151–159. doi:10.1016/j.aca.(2004).05.043 CrossRefGoogle Scholar
  33. Min XB, Xie XD, Chai LY, Liang YJ, Li M, Ke Y (2013) Environmental availability and ecological risk assessment of heavy metals in zinc leaching residue. Trans Nonferrous Metal Soc China 23(1):208–218. doi:10.1016/S1003-6326(13)62448-6 CrossRefGoogle Scholar
  34. Moradkhani D, Eskandari S, Sedaghat B, Najafabadi MR (2013) A study on heavy metals mobility from zinc plant residues in Iran. Physicochem Probl Miner Process 49:567–574. doi:10.5277/ppmp130217 Google Scholar
  35. Ngenda RB, Segers L, Kongolo PK (2009) Base metals recovery from zinc hydrometallurgical plant residues by digestion method. Hydrometallurgy Conference, The Southern African Institute of Mining and Metallurgy, 17–29Google Scholar
  36. Pansu M, Gautheyrou J (2007) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer, Berlin, ISBN-10 3-540-31210-2Google Scholar
  37. Pérez-Cid B, Lavilla I, Bendicho C (1998) Speeding up of a three-stage sequential extraction method for metal speciation using focused ultrasound. Anal Chim Acta 360(1):35–41. doi:10.1016/S0003-2670(97)00718-6 CrossRefGoogle Scholar
  38. Perin G, Craboledda L, Lucchese M, Cirillo R, Dotta L, Zanette ML, Orio AA (1985) Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. Heavy Met Environ 2:454–456Google Scholar
  39. Quevauviller P, Rauret G, Griepink B (1993) Single and sequential extraction in sediments and soils. Int J Environ Anal Chem 51(1-4):231–235. doi:10.1080/03067319308027629 CrossRefGoogle Scholar
  40. Quina MJ, Bordado JC, Quinta-Ferreira RM (2009) The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues. Waste Manag 29(9):2483–2493. doi:10.1016/j.wasman.2009.05.012 CrossRefGoogle Scholar
  41. Safarzadeh MS, Moradkhani D, Ojaghi-Ilkhchi M (2009) Kinetics of sulfuric acid leaching of cadmium from Cd–Ni zinc plant residues. J Hazard Mater 163(2):880–890. doi:10.1016/j.jhazmat.(2008).07.082 CrossRefGoogle Scholar
  42. Sánchez-España J, López-Pamo E, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20(7):1320–1356. doi:10.1016/j.apgeochem.(2005).01.011 CrossRefGoogle Scholar
  43. Singh KP, Mohan D, Singh VK, Malik A (2005) Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. J Hydrol 312:1427. doi:10.1016/j.jhydrol.(2005).01.021 CrossRefGoogle Scholar
  44. Souza ADD (2000) Integration process of the treatments of concentrates or zinc silicates ore and roasted concentrate of zinc sulphidesGoogle Scholar
  45. Souza ADD, Pina PDS, Lima EVDO, Da Silva CA, Leão VA (2007) Kinetics of sulphuric acid leaching of a zinc silicate calcine. Hydrometallurgy 89(3):337–345. doi:10.1016/j.hydromet.(2007).08.005 CrossRefGoogle Scholar
  46. Sundaray SK, Nayak BB, Lin S, Bhatta D (2011) Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi basin, India. J Hazard Mater 186:1837–1846. doi:10.1016/j.jhazmat.(2010).12.081 CrossRefGoogle Scholar
  47. Turan MD, Altundoğan HS, Tümen F (2004) Recovery of zinc and lead from zinc plant residue. Hydrometallurgy 75(1):169–176. doi:10.1016/j.hydromet.2004.07.008 CrossRefGoogle Scholar
  48. U.S. Geological Survey (2014) Mineral commodity summaries: U.S. Geological Survey, 196 p. (ISBN 978–1–4113–3765–7)Google Scholar
  49. United States Environmental Protection Agency (1992) Toxicity Characteristic Leaching Procedure (TCLP), test method 1311-TCLP, Washington, DCGoogle Scholar
  50. United States Environmental Protection Agency (2001) Total, fixed, and volatile solids in water, solids, and biosolids. Washington, DC, p 1–13Google Scholar
  51. United States Environmental Protection Agency (2012) Liquid-solid partitioning as a function of extract ph using a parallel batch extraction procedure, test method 1313, Washington, DCGoogle Scholar
  52. Van Herck P, Van der Bruggen B, Vogels G, Vandecasteele C (2000) Application of computer modelling to predict the leaching behavior of heavy metals from MSWI fly ash and comparison with a sequential extraction method. Waste Manag 20(2):203–210. doi:10.1016/S0956-053X(99)00321-9 CrossRefGoogle Scholar
  53. Van Herreweghe S, Swennen R, Cappuyns V, Vandecasteele C (2002) Chemical associations of heavy metals and metalloids in contaminated soils near former ore treatment plants: a differentiated approach with emphasis on pH stat leaching. J Geochem Explor 76(2):113–138. doi:10.1016/S0375-6742(02)00232-7 CrossRefGoogle Scholar
  54. Visvanthan C, Yin NH, Karthikeyan OP (2010) Co-disposal of electronic waste with municipal solid waste in bioreactor landfills. Waste Manag 30(12):2608–2614. doi:10.1016/j.wasman.2010.08.006 CrossRefGoogle Scholar
  55. Vítková M, Ettler V, Šebek O, Mihaljevič M, Grygar T, Rohovec J (2009) The pH-dependent leaching of inorganic contaminants from secondary lead smelter fly ash. J Hazard Mater 167(1):427–433. doi:10.1016/j.jhazmat.(2008).12.136 CrossRefGoogle Scholar
  56. Vítková M, Ettler V, Hyks J, Astrup T, Kříbek B (2011) Leaching of metals from copper smelter flue dust (Mufulira, Zambian Copperbelt). Appl Geochem 26:S263–S266. doi:10.1016/j.apgeochem.(2011).03.120 CrossRefGoogle Scholar
  57. Vítková M, Hyks J, Ettler V, Astrup T (2013) Stability and leaching of cobalt smelter fly ash. Appl Geochem 29:117–125. doi:10.1016/j.apgeochem.(2012).11.003 CrossRefGoogle Scholar
  58. Zárate-Gutiérrez R, Lapidus GT (2014) Anglesite (PbSO4) leaching in citrate solutions. Hydrometallurgy 144:124–128. doi:10.1016/j.hydromet.(2014).02.003 CrossRefGoogle Scholar
  59. Zhang Y, Jiang J, Chen M (2008) MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash. J Environ Sci 20(11):1398–1402. doi:10.1016/S1001-0742(08)62239-1 CrossRefGoogle Scholar
  60. Zhou Y, Ning XA, Liao X, Lin M, Liu J, Wang J (2013) Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filter bags obtained from a Chinese steel plant. Ecotoxicol Environ Saf 95:130–136. doi:10.1016/j.ecoenv.(2013).05.026 CrossRefGoogle Scholar
  61. Zhu H, Yuan Z, Zeng G, Jinag M, Liang J, Zhang C, Yin J, Huang H, Liu Z, Jiang H (2012) Ecological risk assessment of heavy metals in sediment of Xiawan Port based on modified potential ecological risk index. Trans Nonferrous Metal Soc China 22:1470–1477. doi:10.1016/S1003-6326(11)61343-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire Géomatériaux et Environnement (LGE)Université Paris-EstMarne-la-ValléeFrance
  2. 2.Department of Environmental Engineering and Water TechnologyUNESCO-IHE Institute for Water EducationDelftThe Netherlands
  3. 3.NGqA-CPMTC, Instituto de GeociênciasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  4. 4.Solos e nutrição de plantasUniversidade Estadual de Montes ClarosJanaubaBrazil

Personalised recommendations