Skip to main content

Advertisement

Log in

Profile of particulate-bound organic compounds in ambient environment of Srinagar: a high-altitude urban location in the North-Western Himalayas

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Twenty-four hourly samples of total suspended particulate matter (TSPM) were collected once a week over 17 months in the ambient environment of Srinagar (altitude 1524 m), an urban montane location in the North-Western Himalayas. The samples were analyzed to identify and quantify the presence of diverse organic compounds (OCs) using thermal desorption gas chromatography mass spectroscopy (TD-GCMS). Non-polar organic compounds—n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and molecular tracers (retene and nicotine), were detected in the TSPM samples. Molecular diagnostic ratios, derived from the quantified n-alkanes and PAHs in TSPM, assisted in characterization of the contributing sources. Significant variation in the planetary boundary layer height (meters) with change in season (summer to winter) in this region, also, affected the observed variation in the temporal profile of TSPM-bound OCs. TSPM-bound OCs were predominantly contributed from petroleum and biomass combustion; to a lesser extent from biogenic sources. High concentrations of retene and nicotine, known molecular tracers for coniferous wood combustion and tobacco smoke, respectively, were detected in the winter samples. Seasonal variation in TSPM-bound retene corresponded with the periodicity of biomass burning activity in the region. The benzo(a)pyrene equivalent (BAPE) concentrations, a measure for the carcinogenicity of TSPM-bound PAHs was calculated and the value exceeded the prescribed international standards in winter. This finding poses a major health concern for the inhabitants of this region. High BAPE concentration of PAHs during winter was linked to fossil fuel and biomass combustion, where the prevalent meteorology and topography played a synergistic role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abas MRB, Simoneit BRT (1996) Composition of extractable organic matter of air particles from Malaysia: initial study. Atmos Environ 59:2779–2793

    Article  Google Scholar 

  • Alves C (2008) Characterisation of solvent extractable organic constituents in atmospheric particulate matter: an overview. An Acad Bras Cienc 80:21–82

    Article  CAS  Google Scholar 

  • Alves C, Vicente A, Evtyugina M et al (2009) Characterisation of hydrocarbons in atmospheric aerosols from different European sites. World Acad Sci Eng Technol 57:236–242

    Google Scholar 

  • Alves C, Vicente A, Pio C et al (2012) Organic compounds in aerosols from selected European sites—biogenic versus anthropogenic sources. Atmos Environ 59:243–255. doi:10.1016/j.atmosenv.2012.06.013

    Article  CAS  Google Scholar 

  • Andreae MO, Gelencsér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148. doi:10.5194/acp-6-3131-2006

    Article  CAS  Google Scholar 

  • Balakrishnan K, Ghosh S, Ganguli B et al (2013) State and national household concentrations of PM(2.5) from solid cookfuel use: results from measurements and modeling in India for estimation of the global burden of disease. Environ Health 12:77. doi:10.1186/1476-069X-12-77

    Article  Google Scholar 

  • Barreca S, Bastone S, Caponetti E et al (2014) Determination of selected polyaromatic hydrocarbons by gas chromatography–mass spectrometry for the analysis of wood to establish the cause of sinking of an old vessel (Scauri wreck) by fire. Microchemical J 117:116–121

    Article  CAS  Google Scholar 

  • Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol 40:27–67

    Article  CAS  Google Scholar 

  • Bond TC, Streets DG, Yarber KF et al (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res D Atmos. doi:10.1029/2003JD003697

    Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552. doi:10.1002/jgrd.50171

    Article  CAS  Google Scholar 

  • Burnett RT, Arden Pope C, Ezzati M et al (2014) An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect 122:397–403. doi:10.1289/ehp.1307049

    Google Scholar 

  • Census of India (2011) http://www.censusindia.gov.in/2011-common/census_2011.html

  • Chen Y, Cao J, Zhao J et al (2014) N-Alkanes and polycyclic aromatic hydrocarbons in total suspended particulates from the southeastern Tibetan Plateau: concentrations, seasonal variations, and sources. Sci Total Environ 470–471:9–18. doi:10.1016/j.scitotenv.2013.09.033

    Article  Google Scholar 

  • Chen P, Kang S, Li C et al (2015) Characteristics and sources of polycyclic aromatic hydrocarbons in atmospheric aerosols in the Kathmandu Valley Nepal. Sci Total Environ 538:86–92

    Article  CAS  Google Scholar 

  • Chowdhury Z, Zheng M, Schauer JJ et al (2007) Speciation of ambient fine organic carbon particles and source apportionment of PM 2.5 in Indian cities. J Geophys Res 112:D15303. doi:10.1029/2007JD008386

    Article  Google Scholar 

  • Cincinelli A, del Bubba M, Martellini T, Gambaro A, Lepri L (2007) Gas-particle concentration and distribution of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato (Italy). Chemosphere 68:472–478

    Article  CAS  Google Scholar 

  • Collins JF, Brown JP, Alexeeff GV, Salmon AG (1998) Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul Toxicol Pharmacol 28:45–54. doi:10.1006/rtph.1998.1235

    Article  CAS  Google Scholar 

  • Didyk BM, Simoneit BRT, Alvaro Pezoa L et al (2000) Urban aerosol particles of Santiago, Chile: organic content and molecular characterization. Atmos Environ 34:1167–1179. doi:10.1016/S1352-2310(99)00403-3

    Article  CAS  Google Scholar 

  • Ding LC, Ke F, Wang DKW et al (2009) A new direct thermal desorption-GC/MS method: organic speciation of ambient particulate matter collected in Golden, BC. Atmos Environ 43:4894–4902. doi:10.1016/j.atmosenv.2009.07.016

    Article  CAS  Google Scholar 

  • Directorate of Economics and Statistic J&K (2011). http://ecostatjk.nic.in/

  • Eatough DJ, Benner CL, Bayona JM et al (1989) Chemical compositlon of environmental tobacco smoke. 1 Gas-phase acids and bases. Environ Sci Technol 23:679–687

    Article  CAS  Google Scholar 

  • Falkovich AH, Rudich Y (2001) Analysis of semivolatile organic compounds in atmospheric aerosols by direct sample introduction thermal desorption GC/MS. Environ Sci Technol 35:2326–2333. doi:10.1021/es000280i

    Article  CAS  Google Scholar 

  • Fang GC, Wu YS, Chang CN, Ho TT (2006) A study of polycyclic aromatic hydrocarbons concentrations and source identifications by methods of diagnostic ratio and principal component analysis at Taichung chemical Harbor near Taiwan Strait. Chemosphere 64:1233–1242. doi:10.1016/j.chemosphere.2005.11.031

    Article  CAS  Google Scholar 

  • Fu PQ, Kawamura K, Pavuluri CM et al (2010) Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation. Atmos Chem Phys 10:2663–2689

    Article  CAS  Google Scholar 

  • Fuzzi S, Andreae MO, Huebert BJ et al (2006) Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos Chem Phys 6:2017–2038. doi:10.5194/acp-6-2017-2006

    Article  CAS  Google Scholar 

  • Galarneau E (2008) Source specifity and atmospheric processing of airborne PAHs: implications for source apportionment. Atmos Environ 42:8139–8149

    Article  CAS  Google Scholar 

  • Gelencsér A (2004) Carbonaceous Aerosol. Springer, Netherlands

    Google Scholar 

  • Gelencsér A, Barcza T, Kiss G et al (1998) Distribution of n-alkanes and PAHs in atmospheric aerosols. Atmos Res 46:223–231. doi:10.1016/S0169-8095(97)00064-1

    Article  Google Scholar 

  • Gogou A, Stratigakis N, Kanakidou M, Stephanou EG (1996) Organic aerosols in Eastern Mediterranean: Components source reconciliation by using molecular markers and atmospheric back trajectories. In: Organic Geochemistry. pp 79–96

  • Hassan G, Qureshi W, Kadri SM, Khan GQ, Sona-ul-lah RRA, Omer MS (2008) Gujjar lung: a disease mimicking miliary tuberculosis. Int J Health Sci, Qassim Univ 2:105–108

    CAS  Google Scholar 

  • Henze DK, Seinfeld JH (2006) Global secondary organic aerosol from isoprene oxidation. Geophys Res Lett. doi:10.1029/2006GL025976

    Google Scholar 

  • Herlekar M (2012) Chemical speciation and source assignment of particulate (PM10) phase molecular markers in Mumbai. Aerosol Air Qual Res 12:1247–1260. doi:10.4209/aaqr.2011.07.0091

    CAS  Google Scholar 

  • Ho SSH, Yu JZ, Chow JC et al (2008) Evaluation of an in-injection port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in ambient aerosol samples. J Chromatogr A 1200:217–227. doi:10.1016/j.chroma.2008.05.056

    Article  CAS  Google Scholar 

  • Hussain M (2000) Systematic Geography of Jammu and Kashmir. Rawat Publications, Jaipur, India

    Google Scholar 

  • Jacobson MC, Hansson H-C, Noone KJ, Charlson RJ (2000) Organic atmospheric aerosols: review and state of the science. Rev Geophys 38:267–294. doi:10.1029/1998RG000045

    Article  CAS  Google Scholar 

  • Jeng W-L (2006) Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Mar Chem 102:242–251. doi:10.1016/j.marchem.2006.05.001

    Article  CAS  Google Scholar 

  • Kanakidou M, Seinfeld JH, Pandis SN et al (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123

    Article  CAS  Google Scholar 

  • Kavouras IG, Lawrence J, Koutrakis P et al (1999) Measurement of particulate aliphatic and polynuclear aromatic hydrocarbons in Santiago de Chile: source reconciliation and evaluation of sampling artifacts. Atmos Environ 33:4977–4986. doi:10.1016/S1352-2310(99)00281-2

    Article  CAS  Google Scholar 

  • Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel, and gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 29:533–542

    Article  CAS  Google Scholar 

  • Lelieveld J, Crutzen PJ, Ramanathan V et al (2001) The Indian Ocean Experiment: widespread air pollution from South and Southeast Asia. Science 291:1031–1036

    Article  CAS  Google Scholar 

  • Liu P, Zhao C, Zhang Q et al (2009) Aircraft study of aerosol vertical distributions over Beijing and their optical properties. Tellus B 61:756–767. doi:10.1111/j.1600-0889.2009.00440.x

    Article  Google Scholar 

  • Lohmann R, Lammel G (2004) Adsorptive and absorptive contributions to the gas-particle partioning of polycyclic aromatic hydrocarbons: state of knowledge and recommended parametrization for modeling. Envrion Sci Technol 38:3793–3803

    Article  CAS  Google Scholar 

  • McMurry P (2000) A review of atmospheric aerosol measurements. Atmos Environ 34:1959–1999

    Article  CAS  Google Scholar 

  • Mitra A, Sharma C (2002) Indian aerosols: present status. Chemosphere 49:1175–1190. doi:10.1016/S0045-6535(02)00247-3

    Article  CAS  Google Scholar 

  • Orecchio S (2010) Analytical method, pattern and sources of polycyclic aromatic hydrocarbons (PAHs) in the stone of the Temples of Agrigento (Italy). J Hazard Mat 176:339–347

    Article  CAS  Google Scholar 

  • Orecchio S, Amorello D, Barreca S, Valenti A (2016) Wood pellets for home heating can be considered environmentally friendly fuel? Polycyclic aromatic hydrocarbon (PAHs) in their ashes. Microchemical J 124:267–271

    Article  CAS  Google Scholar 

  • Pachauri T (2013) Characteristics and sources of carbonaceous aerosols in PM2.5 during wintertime in Agra, India. Aerosol Air Qual Res 13:977–991. doi:10.4209/aaqr.2012.10.0263

    CAS  Google Scholar 

  • Pankow JF (2001) A consideration of the role of gas/particle partitioning in the deposition of nicotine and other tobacco smoke compounds in the respiratory tract. Chem Res Toxicol 14:1465–1481. doi:10.1021/tx0100901

    Article  CAS  Google Scholar 

  • Paralikar SJ, Paralikar JH (2010) High altitude medicine. Indian J Occup Environ Med 14(1):6–12. doi:10.4103/0019-5278.64608

    Article  Google Scholar 

  • Parikh J (2011) Hardships and health impacts on women due to traditional cooking fuels: a case study of Himachal Pradesh, India. Energy Policy 39:7587–7594

    Article  Google Scholar 

  • Peel MC, Finlayyson BL, Mcmahon TA (2007) Updated map of Köoppen-Geiger climate classification. Hydrol-earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Pitts FBJ, Pitts JNJ (2000) Chemistry of the upper and lower atmosphere: Theory experiments and applications. Academic, US

    Google Scholar 

  • Pope CA 3rd, Burnett RT, Turner MC et al (2011) Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure-response relationships. Environ Health Perspect 119:1616–1621. doi:10.1289/ehp.1103639

    Article  Google Scholar 

  • Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chemie - Int Ed 44:7520–7540

    Article  Google Scholar 

  • Prospero JM (2002) Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1002. doi:10.1029/2000RG000095

    Article  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA et al (1993) Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ Sci Technol 27:636–651

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA et al (1994) Sources of fine organic aerosol. 6. Cigarette smoke in the urban atmosphere. Environ Sci Technol 28:1375–1388

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA et al (1998) Sources of fine organic aeresol. 9. Pine, oak, and synthetic log combustion in residential fireplaces. Environ Sci Technol 32:13–22. doi:10.1021/es960930b

    Article  CAS  Google Scholar 

  • Schauer JJ, Rogge WF, Hildemann LM, Mazurek MA, Cass GR (2007) Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 41:241–259

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change.

  • Sharma D (2003) Preliminary chemical characterization of particle-phase organic compounds in New Delhi, India. Atmos Environ 37:4317–4323. doi:10.1016/S1352-2310(03)00563-6

    Article  CAS  Google Scholar 

  • Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric Identification of Organic Compounds, 6th edition, Wiley India (P.) Ltd., New Delhi.

  • Simoneit BRT (1989) Organic matter of the troposphere—V: application of molecular marker analysis to biogenic emissions into the troposphere for source reconciliations. J Atmos Chem 8:251–275

    Article  CAS  Google Scholar 

  • Simoneit BR (2002) Biomass burning—a review of organic tracers for smoke from incomplete combustion. Appl Geochem 17:129–162. doi:10.1016/S0883-2927(01)00061-0

    Article  CAS  Google Scholar 

  • Simoneit BRT, Cardoso JN, Robinson R (1990) An assessment of the origin and composition of higher molecular weight organic matter in aerosols over Amazonia. Chemosphere 21:1285–1301

    Article  CAS  Google Scholar 

  • Swartz E, Stockburger L, Vallero DA (2003) Polycyclic aromatic hydrocarbons and other semivolatile organic compounds collected in New York city in response to the events of 9/11. Environ Sci Technol 37:3537–3546

    Article  CAS  Google Scholar 

  • Tandon A, Yadav S, Attri AK (2008) City-wide sweeping a source for respirable particulate matter in the atmosphere. Atmos Environ 42:1064–1069

    Article  CAS  Google Scholar 

  • Tandon A, Yadav S, Attri AK (2010) Coupling between meteorological factors and ambient aerosol load. Atmos Environ 44:1237–1243. doi:10.1016/j.atmosenv.2009.12.037

    Article  CAS  Google Scholar 

  • Tandon A, Yadav S, Attri AK (2013) Non-linear analysis of short term variations in ambient visibility. Atmos. Pollut. Res. 4 doi: 10.5094/APR.2013.020

  • Vasconcellos PC, Souza DZ, Sanchez-Ccoyllo O et al (2010) Determination of anthropogenic and biogenic compounds on atmospheric aerosol collected in urban, biomass burning and forest areas in São Paulo, Brazil. Sci Total Environ 408:5836–5844. doi:10.1016/j.scitotenv.2010.08.012

    Article  CAS  Google Scholar 

  • Venkataraman C, Reddy CK, Josson S et al (2002) Aerosol size and chemical characteristics at Mumbai, India, during the INDOEX-IFP. Atmos Environ 36:1979–1991

    Article  CAS  Google Scholar 

  • Wang G, Kawamura K (2005) Molecular characteristics of urban organic aerosols from Nanjing: a case study of a mega-city in China. Environ Sci Technol 39:7430–7438

    Article  CAS  Google Scholar 

  • Watson JG, Chow JC, DeBois D, etal (1997) Guidance for network design and optimum site exposure for PM2.5 and PM10, U.S. Environmental Protection Agency Research Triangle Park, NC 27711

  • Xie M, Wang G, Hu S et al (2009) Aliphatic alkanes and polycyclic aromatic hydrocarbons in atmospheric PM10 aerosols from Baoji, China: implications for coal burning. Atmos Res 93:840–848. doi:10.1016/j.atmosres.2009.04.004

    Article  CAS  Google Scholar 

  • Yadav S, Tandon A, Attri AK (2013a) Characterization of aerosol associated non-polar organic compounds using TD-GC-MS: a four year study from Delhi, India. J Hazard Mater 252–253:29–44. doi:10.1016/j.jhazmat.2013.02.024

    Article  Google Scholar 

  • Yadav S, Tandon A, Attri AK (2013b) Monthly and seasonal variations in aerosol associated n-alkane profiles in relation to meteorological parameters in New Delhi, India. Aerosol Air Qual Res 13:287–300

    CAS  Google Scholar 

  • Yadav S, Tandon A, Attri AK (2014) Timeline trend profile and seasonal variations of nicotine present in ambient PM10 samples: a four year investigation from Delhi region, India. Atmos Environ 98:89–97

    Article  CAS  Google Scholar 

  • Yadav, S., Tandon, A., Tripathi, J.K., Yadav, S., Attri, A.K. (2015), Statistical assessment of respirable and coarser size ambient aerosol sources and their timeline trend profile determination: a four year study from Delhi. Atmos Pollut Res, 1–11. doi: 10.1016/j.apr.2015.08.010

  • Yan J, Wang L, Fu PP, Yu H (2004) Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutat Res - Genet Toxicol Environ Mutagen 557:99–108. doi:10.1016/j.mrgentox.2003.10.004

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R et al (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515. doi:10.1016/S0146-6380(02)00002-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors extend their gratitude to Advanced Instrumentation Research Facility, Jawaharlal Nehru University, for providing TD-GCMS facility. Help extended by Dr. Ankit Tandon and Ajay Kumar in editing the text is acknowledged. Authors acknowledge the role of two anonymous reviewers of this manuscript; their thorough review, suggestions, and comments made have gone a long way in improving the manuscript in its present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Attri.

Additional information

Responsible editor: Constantini Samara

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.62 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huma, B., Yadav, S. & Attri, A.K. Profile of particulate-bound organic compounds in ambient environment of Srinagar: a high-altitude urban location in the North-Western Himalayas. Environ Sci Pollut Res 23, 7660–7675 (2016). https://doi.org/10.1007/s11356-015-5994-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5994-1

Keywords

Navigation