Skip to main content

Advertisement

Log in

Sediment cores from kettle holes in NE Germany reveal recent impacts of agriculture

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Glacial kettle holes in young moraine regions receive abundant terrigenous material from their closed catchments. Core chronology and sediment accumulation were determined for two semi-permanent kettle holes, designated RG and KR, on arable land close to the villages of Rittgarten and Kraatz, respectively, in Uckermark, NE Germany. Core dating (210Pb, 137Cs) revealed variable sediment accretion rates through time (RG 0.4–23.1 mm a−1; KR 0.2–35.5 mm a−1), with periods of high accumulation corresponding to periods of intensive agricultural activity and consequent erosional inputs from catchments. Sediment composition (C, N, P, S, K, Ca, Fe, Mn, Zn, Cu, Mo, Pb, Cd, Zr) was used to determine sediment source and input processes. At RG, annual P input increased from 0.65 kg ha−1 in the early nineteenth century to 1.67 kg ha−1 by 2013. At KR, P input increased from 0.6 to 4.1 kg ha−1 over the last century. There was a concurrent increase in Fe input in both water bodies. Thus, Fe/P ratios showed no temporal trend and did not differ between RG (18.5) and KR (18.4), indicating similar P mobility. At RG, the S/Fe ratio increased from 0.4 to 2.3, indicating more iron sulphides and thus higher P availability, coinciding with high coverage of duckweed (Spirodela polyrhiza (L.)) and soft hornwort (Ceratophyllum submersum L.). At KR, however, this ratio remained low and relatively unchanged (0.3 ± 0.4), indicating more efficient Fe-P binding and lower hydrophyte productivity. Trends in sediment composition indicate a shift towards eutrophication in both kettle holes, but with differences in timing and magnitude. Other morphologically similar kettle holes in NE Germany that are prone to erosion could have been similarly impacted but may differ in the extent of sediment infilling and degradation of their ecological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altenfelder S, Raabe U, Albrecht H (2014) Effects of water regime and agricultural land use on diversity and species composition of vascular plants inhabiting temporary ponds in northeastern Germany. Tuexenia 34:145–162. doi:10.14471/2014.34.013

    Google Scholar 

  • Andersen JM (1976) An ignition method for determination of total phosphorus in lake sediments. Water Res 10:329–331. doi:10.1016/0043-1354(76)90175-5

    Article  CAS  Google Scholar 

  • Appleby P, Oldfield F (1978) The calculation of 210 Pb dates assuming a constant rate of supply of unsupported 210 Pb to the sediment. Catena 5:1–8

    Article  CAS  Google Scholar 

  • Bayerl G (2006) Geschichte der Landnutzung in der Region Barnim-Uckermark. – Berlin Brandenburgische Akademie der Wissenschaft (ed): Materialien der Interdisziplinären Arbeitsgruppe Zukunftsorientierte Nutzung ländlicher Räume – Land Innovation Nr. 12., Berlin. (In German)

  • Battarbee RW, Anderson NJ, Jeppesen E, Leavitt PR (2005) Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshw Biol 50:1772–1780. doi:10.1111/j.1365-2427.2005.01427.x

    Article  CAS  Google Scholar 

  • BB RL-EvB (2001) Brandenburgische Richtlinie-Anforderungen an die Entsorgung von Baggergut. Amtsblatt für Brandenburg 12(33), Potsdam 15.08.2001: 566–583. (In German)

  • Begy R, Cosma C, Horvath Z (2009) Sediment accumulation rate in the red lake (Romania) determined by Pb-210 and Cs-137 radioisotopes. Rom J Phys 54:943–949, ISSN: 1221-146X

    CAS  Google Scholar 

  • Berger G, Pfeffer H, Kalettka T (eds) (2011) Amphibienschutz in kleingewässerreichen Ackerbaugebieten (conservation of amphibians in pond rich arable regions). Natur & Text, Rangsdorf, 384 pp (In German). ISBN 978-3-942062-02-2

    Google Scholar 

  • Biddanda BA, Cotner JB (2002) Love handles in aquatic ecosystems: the role of dissolved organic carbon drawdown, resuspended sediments, and terrigenous inputs in the carbon balance of Lake Michigan. Ecosystems 5:431–445. doi:10.1007/s10021-002-0163-z

    Article  CAS  Google Scholar 

  • Bilotta GS, Brazier RE, Haygarth PM (2007) Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: erosion. Hydrol Process 21:135–139. doi:10.1002/hyp.6600

    Article  Google Scholar 

  • Binford MW (1990) Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J Paleolimnol 3:253–267. doi:10.1007/BF00219461

    Article  Google Scholar 

  • Brenner M, Binford MW (1988) Relationships between concentrations of sedimentary variables and trophic state in Florida lakes. Can J Fish Aquat Sci 45:294–300, ISSN: 0706-652X

    Article  Google Scholar 

  • Carignan R, Planas D, Vis C (2000) Planktonic production and respiration in oligotrophic shield lakes. Limnol Oceanogr 45:189–199, ISSN: 0024–3590

    Article  Google Scholar 

  • Croudace IW, Rindby A, Rothwell RG (2006) ITRAX. Description and evaluation of a new X-ray core scanner. In: Rothwell R G (ed), New techniques in sediment core analysis, 267. Geological Society (Spec. Public.), London, pp. 51–63

  • DIN ISO 18589–3 (2014) Measurement of radioactivity in the environment–soil-part 3: measurement of gamma-emitting radionuclides, 2014–02. (In German)

  • Donner R, Witt A (2006) Characterisation of long-term climate change by dimension estimates of multivariate palaeoclimatic proxy data. Nonlinear Process Geophys 13:485–497, www.nonlin-processes-geophys.net/13/485/2006

    Article  Google Scholar 

  • Engstrom DR, Schottler SP, Leavitt PR, Havens KE (2006) A reevaluation of the cultural eutrophication of Lake Okeechobee using multiproxy sediment records. Ecol Appl 16:1194–1206. doi:10.1890/1051-0761(2006)016[1194:AROTCE]2.0.CO;2

    Article  Google Scholar 

  • Frielinghaus M, Vahrson W-M (1998) Soil translocation by water erosion from agricultural cropland into wet depressions (morainic kettle holes). Soil Tillage Res 46:23–30. doi:10.1016/S0167-1987(98)80104-9

    Article  Google Scholar 

  • Gąsiorowski M (2008) Deposition rate of lakes sediments under different alternative stable states. Geochronometria 32:29–35. doi:10.2478/v10003-008-0020-y

    Google Scholar 

  • GeoBasis (2014) GeoBasis-DE/LGB, MIL Brandenburg, 6 July 2014, (http://luaplims01.brandenburg.de/invekos_internet/viewer.htm)

  • Gołdyn B, Bernard R, Czyz MJ, Jankowiak A (2012) Diversity and conservation status of large branchiopods (Crustacea) in ponds of western Poland. Limnologica 42:264–270. doi:10.1016/j.limno.2012.08.006

    Article  Google Scholar 

  • Gołdyn B, Chudzińska M, Barałkiewicz D, Celewicz-Gołdyn S (2015) Heavy metal concentrations in the sediments of astatic ponds: influence of geomorphology, hydroperiod, water chemistry and vegetation. Ecotoxicol Environ Saf 118:103–111. doi:10.1016/j.ecoenv.2015.04.016

    Article  Google Scholar 

  • Guhl M, Marquardt M (2009) Einfluss einer Kalium- und Magnesiumdüngung zu Mais, auf Wachstum und Ertrag unter Wasserstress (Feldversuch). Bachelor Thesis, Hochschule Neubrandenburg, 99 pp. (In German)

  • Håkanson L (2005) The importance of lake morphometry and catchment characteristics in limnology–ranking based on statistical analyses. Hydrobiologia 541:117–137. doi:10.1007/sl0750-004-5032-7

    Article  Google Scholar 

  • Havens KE, Jin K-R, Iricanin N, James RT (2007) Phosphorus dynamics at multiple time scales in the pelagic zone of a large shallow lake in Florida, USA. Hydrobiologia 581:25–42. doi:10.1007/s10750-006-0502-8

    Article  CAS  Google Scholar 

  • Hermanns Y-M, Biester H (2013) A 17,300-year record of mercury accumulation in a pristine lake in southern Chile. J Palaeolimnology 49(4):547–556. doi:10.1007/s10933-012-9668-4

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis. Springer series in statistics. Springer, New York, 489 pp

    Google Scholar 

  • Kalettka T, Rudat C (2006) Hydrogeomorphic types of glacially created kettle holes in North-East Germany. Limnologica 36:54–64. doi:10.1016/j.limno.2005.11.001

    Article  Google Scholar 

  • Kalettka T, Rudat C, Quast J (2001) 18 “Potholes” in Northeast German agro-landscapes: functions, land use impacts, and protection strategies. In: Tenhunen JD, Lenz R, Hentschel R (eds) Ecosystem approaches to landscape management in central Europe, ecological studies 147. Springer, Berlin, pp 291–298

    Chapter  Google Scholar 

  • Kamiński R, Wolnicki J, Sikorska J (2011) Physical and chemical water properties in water bodies inhabited by the endangered lake minnow Eupallasella percnurus (Pall.), in central Poland. Arch Pol Fish 19:153–159. doi:10.2478/v10086-011-0019-2

    Google Scholar 

  • Karasiewicz MT, Hulisz P, Noryśkiewicz AM, Krześlak I, Switoniak M (2014) The record of hydrodynamic changes in the sediments of a kettle-hole in a young glacial landscape (north central Poland). Quat Int 328–329:264–276. doi:10.1016/j.quaint.2013.09.045

    Article  Google Scholar 

  • Kleeberg A, Herzog C, Jordan S, Hupfer M (2010) What drives the evolution of the sedimentary phosphorus cycle? Limnologica 40:102–113. doi:10.1016/j.limno.2009.11.001

    Article  CAS  Google Scholar 

  • Kleeberg A, Neyen M, Kalettka T (2015) Element-specific downward fluxes impact the metabolism and vegetation of kettle holes. Hydrobiologia. doi:10.1007/s10750-015-2460-5

    Google Scholar 

  • Koszinski S, Gerke HH, Hierold W, Sommer M (2013) Geophysical-based modeling of a kettle hole catchment of the morainic soil landscape. Vadose Zone J 12(4): doi: 10.2136/vzj2013.02.0044

  • Kronvang B, Bechmann M, Lundekvam H, Behrendt H, Rubæk GH, Schoumans OF, Syversen N, Andersen HE, Hoffmann CC (2005) Phosphorus losses from agricultural areas in river basins: effects and uncertainties of targeted mitigation measures. J Environ Qual 34:2129–2144. doi:10.2134/jeq2004.0439

    Article  CAS  Google Scholar 

  • Lamentowicz M, Obremska M, Mitchell EAD (2008) Autogenic succession, land-use change, and climatic influences on the Holocene development of a kettle-hole mire in Northern Poland. Rev Palaeobot Palynol 151:21–40. doi:10.1016/j.revpalbo.2008.01.009

    Article  Google Scholar 

  • Lischeid G, Kalettka T (2012) Grasping the heterogeneity of kettle hole water quality in Northeast Germany. Hydrobiologia 689:63–77. doi:10.1007/s10750-011-0764-7

    Article  CAS  Google Scholar 

  • Meine L (2014) Bodenkundliche Untersuchung von Niedermooren im Quilloweinzugsgebiet (Uckermark) - Eine Degradationsanalyse anhand von Profilaufnahmen und Vergleich mit Altbefunden der Preußischen Geologischen Kartierung. Bachelor Thesis, Philipps University Marburg, 1–63. (In German)

  • Molot LA, Dillon PJ (1996) Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere. Glob Biogeochem Cycles 10:483–492. doi:10.1029/96GB01666

    Article  CAS  Google Scholar 

  • Mortvedt JJ, Beaton JD (1995) Heavy metal and radionuclide contaminants in phosphate fertilizers. In: Tiessen H (ed) Phosphorus in the global environment: transfer, cycles and management. Wiley, New York, pp 93–106

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 27:31–36, ISSN: 0003–2670

    Article  CAS  Google Scholar 

  • Nehyba S, Nývlt D, Schkade U, Kirchner G, Francu E (2011) Depositional rates and dating techniques of modern deposits in the Brno reservoir (Czech Republic) during the last 70 years. J Paleolimnol 45:41–55. doi:10.1007/s10933-010-9478-5

    Article  Google Scholar 

  • Neyen M (2014) Depositional characteristics of glacial kettle holes at Kraatz and Rittgarten, NE Brandenburg, Germany. BSc (Bachelor of Science) thesis, University of Potsdam, 1–47

  • Pätzig M, Kalettka T, Glemnitz M, Berger G (2012) What governs macrophyte species richness in kettle hole types? A case study from Northeast Germany. Limnologica 42:340–354. doi:10.1016/j.limno.2012.07.004

    Article  Google Scholar 

  • Pienkowski P (2000) Disappearance of ponds in the younger Pleistocene landscapes of Pomerania. J Water Land Dev 4:55–68, ISSN: 1429–7426

    Google Scholar 

  • Preston TM, Sojda RS, Gleason RA (2013) Sediment accretion rates and sediment composition in Prairie pothole wetlands under varying land use practices, Montana, United States. J Soil Water Conserv 68:199–211. doi:10.2489/jswc.68.3.199

    Article  Google Scholar 

  • R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Rose NL, Morley D, Appleby PG, Battarbee RW, Alliksaar T, Guilizzoni P, Jeppesen E, Korhola A, Punning J-M (2011) Sediment accumulation rates in European lakes since AD 1850: trends, reference conditions and exceedance. J Paleolimnol 45:447–468. doi:10.1007/s10933-010-9424-6

    Article  Google Scholar 

  • Rothe M, Kleeberg A, Grüneberg B, Friese K, Pérez-Mayo M, Hupfer M (2015) Sedimentary S:Fe ratio indicates vivianite occurrence: a study from two contrasting freshwater systems. Plos One 10(11):e0143737. doi:10.1371/journal

  • Selle B, Schwientek M, Lischeid G (2013) Understanding processes governing water quality in catchments using principal component scores. J Hydrol 486:31–38. doi:10.1016/j.jhydrol.2013.01.030

    Article  CAS  Google Scholar 

  • Tamura H, Goto K, Yotsuyanagi T, Nagayama M (1974) Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta 21:314–318

    Article  CAS  Google Scholar 

  • Ulrich K-U, Paul L, Hupfer M (2000) Schadstoffgehalte in Sedimenten von Staugewässern. Wasser und Boden 52:27–32

    CAS  Google Scholar 

  • Vahrson W-M, Frielinghaus M (1998) Bodenverlagerung durch Ackerbau in einer Jungmoränenlandschaft Nordostdeutschlands. Beiträge für Forstwirtschaft und Landschaftsökologie 32:109–114

    Google Scholar 

  • Verstraeten G, Poesen J (2002) Using sediment deposits in small ponds to quantify sediment yield from small catchments: possibilities and limitations. Earth Surf Process Landf 27:1425–1439. doi:10.1002/esp.439

    Article  Google Scholar 

  • Villasenor T, Jaeger JM, Marsaglia KM, Browne GH (2015) Evaluation of the relative roles of global versus local sedimentary controls on Middle to Late Pleistocene formation of continental margin strata, Canterbury Basin, New Zealand. Sedimentology 62:1118–1148. doi:10.1111/sed.12181

    Article  Google Scholar 

  • Vincent WF (2009) Effects of climate change on lakes, p. 55–60. In: GE Likens (ed) Encyclopedia of inland waters. Elsevier

  • Wetzel RG (2001) Limnology. Academic, London, 1006 pp

    Google Scholar 

Download references

Acknowledgments

We are very grateful to all persons who contributed to this study. Kristina Holz and her colleagues did most of the laboratory analysis. Sabine Fritsche and Ralph Tauschke provided the kettle hole morphometry and Carsten Hoffmann the study site map (all Leibniz Centre for Agricultural Landscape Research, ZALF). Sabine Stahl (University Bremen, Geomorphology and Polar Research) conducted the μXRF measurements. The present study was associated with the project LandScale (Connecting Processes and Structures Deriving the Landscape Carbon Dynamics over Scales by Arthur Gessler and Katrin Premke, ZALF). We also thank the four reviewers for their helpful comments on a previous version of the manuscript, particularly the review and language revision by Mark Brenner (University of Florida, Department of Geological Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kleeberg.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleeberg, A., Neyen, M., Schkade, UK. et al. Sediment cores from kettle holes in NE Germany reveal recent impacts of agriculture. Environ Sci Pollut Res 23, 7409–7424 (2016). https://doi.org/10.1007/s11356-015-5989-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5989-y

Keywords

Navigation