Skip to main content

Advertisement

Log in

Citric acid- and Tween® 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A pot experiment was designed to assess the phytoremediation potential of alfalfa (Medicago sativa L.) in a co-contaminated (i.e., heavy metals and petroleum hydrocarbons) soil and the influence of citric acid and Tween® 80 (polyethylene glycol sorbitan monooleate), applied individually and combined together, for their possible use in chemically assisted phytoremediation. The results showed that alfalfa plants could tolerate and grow in a co-contaminated soil. Over a 90-day experimental time, shoot and root biomass increased and negligible plant mortality occurred. Heavy metals were uptaken by alfalfa to a limited extent, mostly by plant roots, and their concentration in plant tissues were in the following order: Zn > Cu > Pb. Microbial population (alkane-degrading microorganisms) and activity (lipase enzyme) were enhanced in the presence of alfalfa with rhizosphere effects of 9.1 and 1.5, respectively, after 90 days. Soil amendments did not significantly enhance plant metal concentration or total uptake. In contrast, the combination of citric acid and Tween® 80 significantly improved alkane-degrading microorganisms (2.4-fold increase) and lipase activity (5.3-fold increase) in the rhizosphere of amended plants, after 30 days of experiment. This evidence supports a favorable response of alfalfa in terms of tolerance to a co-contaminated soil and improvement of rhizosphere microbial number and activity, additionally enhanced by the joint application of citric acid and Tween® 80, which could be promising for future phytoremediation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adetutu EM, Ball AS, Weber J, Aleer S, Dandie CE, Juhasz AL (2012) Impact of bacterial and fungal processes on 14C-hexadecane mineralisation in weathered hydrocarbon contaminated soil. Sci Total Environ 414:585–591

    Article  CAS  Google Scholar 

  • Agnello AC, Huguenot D, van Hullebusch ED, Esposito G (2014) Enhanced phytoremediation: a review of low molecular weight organic acids and surfactants used as amendments. Crit Rev Environ Sci Technol 44:2531–2576

    Article  CAS  Google Scholar 

  • Agnello AC, Huguenot D, van Hullebusch ED, Esposito G (2015) Phytotoxicity of citric acid and Tween 80® for potential use as soil amendments in assisted phytoremediation. Int J Phytoremediat 17(7):669–677

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Soil processes and the behaviour of heavy metals. In: Alloway BJ (ed) Heavy Metals in Soils, 2nd edn. Blackie Academic and Professional, New York, pp 11–25

    Chapter  Google Scholar 

  • An C, Huang G, Yu H, Chen W, Li G (2010) Effect of short-chain organic acids and pH on the behaviors of pyrene. Chemosphere 81:1423–1429

    Article  CAS  Google Scholar 

  • An C-j, Huang G-h, Wei J, Yu H (2011) Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment. Water Res 45:5501–5510

    Article  CAS  Google Scholar 

  • BASOL MEDDE (2015) Base de donées BASOL sur les sites et sols pollués (ou potentiellement pollués) appelant une action des pouvoirs publics, à titre préventif ou curatif. http://basol.developpement-durable.gouv.fr/tableaux/home.htm. Accessed 15/4/2015

  • Bonfranceschi BA, Flocco CG, Donati ER (2009) Study of the heavy metal phytoextraction of two forage species growing in an hydroponic environment. J Hazard Mater 165:366–371

    Article  CAS  Google Scholar 

  • Branzini A, Santos González R, Zubillaga M (2012) Absorption and translocation of copper, zinc and chromium by Sesbania virgata. J Environ Manag 102:50–54

    Article  CAS  Google Scholar 

  • Briones AM Jr, Reichardt W (1999) Estimating microbial population counts by 'most probable number' using Microsoft Excel®. J Microbiol Methods 35:157–161

    Article  Google Scholar 

  • Bruus Pedersen M, Kjær C, Elmegaard N (2000) Toxicity and Bioaccumulation of Copper to Black Bindweed (Fallopia convolvulus) in Relation to Bioavailability and the Age of Soil Contamination. Arch Environ Contam Toxicol 2000:431–439

    Article  Google Scholar 

  • Campbell CR, Plank CO (1998) Preparation of Plant Tissue for Laboratory Analysis. In: Kalra YP (ed) Handbook of Reference Methods for Plant Analysis. CRC Press Taylor & Francis Group, Boca Raton, pp 37–49

    Google Scholar 

  • Chen YX et al (2003) The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50:807–811

    Article  CAS  Google Scholar 

  • Cheng KY, Lai KM, Wong JWC (2008) Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum. Chemosphere 73:791–797

    Article  CAS  Google Scholar 

  • Chigbo C, Batty L (2013) Phytoremediation potential of Brassica juncea in Cu-pyrene co-contaminated soil: Comparing freshly spiked soil with aged soil. J Environ Manag 129:18–24

    Article  CAS  Google Scholar 

  • Chigbo C, Batty L, Bartlett R (2013) Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper-pyrene co-contaminated soil. Chemosphere 90:2542–2548

    Article  CAS  Google Scholar 

  • Coburn FD (1912) The book of alfalfa. History, cultivations and merits. Its uses as a forage and fertilizer. Orange Judd Company, New York

    Google Scholar 

  • Ding KQ, Luo YM (2005) Bioremediation of Copper and Benzo[a]pyrene-Contaminated Soil by Alfalfa. J Agro-environ Sci 24:766–770

    CAS  Google Scholar 

  • do Nascimento CWA, Amarasiriwardena D, Xing B (2006) Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environ Pollut 140:114–123

    Article  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity and fate of chelating agents. Chemosphere 68:989–1003

    Article  CAS  Google Scholar 

  • Fan S, Li P, Gong Z, Ren W, He N (2008) Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere 71:1593–1598

    Article  CAS  Google Scholar 

  • Flogeac K, Guillon E, Aplincourt M (2007) Competitive sorption of metal ions onto a north-eastern France soil. Isotherm and XAFS studies. Geoderma 139:180–189

    Article  CAS  Google Scholar 

  • Gao Y, He J, Ling W, Hu H, Liu F (2003) Effects of organic acids on copper and cadmium desorption from contaminated soils. Environ Int 29:613–618

    Article  CAS  Google Scholar 

  • Gao Y, Ling W, Wong MH (2006) Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant. Chemosphere 63:1560–1567

    Article  CAS  Google Scholar 

  • Gao Y, Ling W, Zhu L, Zhao B, Zheng Q (2007) Surfactant–Enhanced Phytoremediation of Soils Contaminated with Hydrophobic Organic Contaminants: Potential and Assessment. Pedosphere 17:409–418

    Article  CAS  Google Scholar 

  • Gao Y, Shen Q, Ling W, Ren L (2008) Uptake of polycyclic aromatic hydrocarbons by Trifolium pretense L. from water in the presence of a nonionic surfactant. Chemosphere 72:636–643

    Article  CAS  Google Scholar 

  • Gao Y, Miao C, Mao L, Zhou P, Jin Z, Shi W (2010a) Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid. J Hazard Mater 181:771–777

    Article  CAS  Google Scholar 

  • Gao Y, Ren L, Ling W, Gong S, Sun B, Zhang Y (2010b) Desorption of phenanthrene and pyrene in soils by root exudates. Bioresour Technol 101:1159–1165

    Article  CAS  Google Scholar 

  • Gao Y, Ren L, W. L, Kang F, Zhu X, Sun B (2010c) Effects of Low-Molecular-Weight Organic Acids on Sorption-Desorption of Phenanthrene in Soils Soil Sci Soc Am J 74:51-59

  • Gargouri Y, Julien R, Bois AG, Verger R, Sarda L (1983) Studies on the detergent inhibition of pancreatic lipase activity. J Lipid Res 24:1336–1342

    CAS  Google Scholar 

  • Gaskin SE, Bentham RH (2010) Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Sci Total Environ 408:3683–3688

    Article  CAS  Google Scholar 

  • Gonzalez M, Miglioranza KSB, Aizpún JE, Isla FI, Peña A (2010) Assessing pesticide leaching and desorption in soils with different agricultural activities from Argentina (Pampa and Patagonia). Chemosphere 81:351–358

    Article  CAS  Google Scholar 

  • Hechmi N, Aissa NB, Jedidi N, Abdenaceur H (2013) Phytoremediation Potential of Maize (Zea Mays L.) in Co-contaminated Soils with Pentachlorophenol and Cadmium. Int J Phytoremediat 15:703–713

    Article  CAS  Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of Uranium-Contaminated Soils: Role of Organic Acids in Triggering Uranium Hyperaccumulation in Plants. Environ Sci Technol 32:2004–2008

    Article  CAS  Google Scholar 

  • Jones MN (1992) Surfactant Interactions with Biomembranes and Proteins. Chem Soc Rev 21:127–136

    Article  CAS  Google Scholar 

  • Kanwar SS, Kaushal RK, Jawed A, Gupta R, Chimni SS (2005) Methods for inhibition of residual lipase activity in colorimetric assay: a comparative study. Indian J Biochem Biophys 42:233–237

    CAS  Google Scholar 

  • Kirk JL, Klirnomos JN, Lee H, Trevors JT (2002) Phytotoxicity Assay to Assess Plant Species for Phytoremediation of Petroleum-Contaminated Soil. Bioremediat J 6:57–63

    Article  CAS  Google Scholar 

  • Kirk JL, Klironomos JN, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133:455–465

    Article  CAS  Google Scholar 

  • Li YY, Yang H (2013) Bioaccumulation and degradation of pentachloronitrobenzene in Medicago sativa. J Environ Manag 119:143–150

    Article  CAS  Google Scholar 

  • Lin Q, Shen KL, Zhao HM, Li WH (2008) Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. J Hazard Mater 150:515–521

    Article  CAS  Google Scholar 

  • Luo Y, Rimmer DL (1995) Zinc-copper interaction affecting plant growth on a metal-contaminated soil. Environ Pollut 88:79–83

    Article  Google Scholar 

  • Lynch JM (1990) The rhizosphere. John Wiley, Chichester

    Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (1999) Soil lipase activity - A useful indicator of oil biodegradation. Biotechnol Tech 13:859–863

    Article  CAS  Google Scholar 

  • Margesin R, Feller G, Hämmerle M, Stegner U, Schinner F (2002) A colorimetric method for the determination of lipase activity in soil. Biotechnol Lett 24:27–33

    Article  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (eds) (2004) Phytoremediation: Transformation and Control of Contaminants. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  • Meers E, Tack FMG, Van Slycken S, Ruttens A, Du Laing G, Vangronsveld J, Verloo MG (2008) Chemically Assisted Phytoextraction: A Review of Potential Soil Amendments for Increasing Plant Uptake of Heavy Metals. Int J Phytoremediat 10:390–414

    Article  CAS  Google Scholar 

  • Mitton FM, Gonzalez M, Peña A, Miglioranza KSB (2012) Effects of amendments on soil availability and phytoremediation potential of aged p,p'-DDT, p,p'-DDE and p,p'-DDD residues by willow plants (Salix sp.). J Hazard Mater 203-204:62–68

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by surfactants. J Hazard Mater 85:111–125

    Article  CAS  Google Scholar 

  • Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou W (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574

    Article  CAS  Google Scholar 

  • Nannipieri P et al. (2012) Soil enzymology: classical and molecular approaches Biology and Fertility of Soils 48

  • Nichols TD, Wolf DC, Rogers HB, Beyrouty CA, Reynolds CM (1997) Rhizosphere microbial populations in contaminated soils Water. Air Soil Pollut 95:165–178

    CAS  Google Scholar 

  • Ouvrard S et al (2011) In situ assessment of phytotechnologies for multicontaminated soil management. Int J Phytoremediat 13:245–263

    Article  Google Scholar 

  • Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental Applications of Biosurfactants: Recent Advances. Int J Mol Sci 12:633–654

    Article  CAS  Google Scholar 

  • Peralta JR et al. (2001) Effect of metal concentration and soil pH upon heavy metal uptake and plant growth in alfalfa. Paper presented at the Conference Manhattan, Kansas, Hazardous Substance Research Center

  • Peralta-Videa JR, Gardea-Torresdey JL, Gomez E, Tiemann KJ, Parsons JG, Carrillo G (2002) Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environ Pollut 119:291–301

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, de la Rosa G, Gonzalez JH, Gardea-Torresdey JL (2004) Effects of the growth stage on the heavy metal tolerance of alfalfa plants. Adv Environ Res 8:679–685

    Article  CAS  Google Scholar 

  • Pletnev MY (2001) Chemistry of surfactants. In: Fainerman VB, Möbius D, Miller R (eds) Surfactants: Chemistry, Interfacial Properties, Applications. Elsevier Science B.V, The Netherlands, pp 1–98

    Chapter  Google Scholar 

  • Qu J, Lou C, Yuan W, Wang X, Cong Q, Wang L (2011) The effect of sodium hydrogen phosphate/citric acid mixtures on phytoremediation by alfalfa & metals availability in soil. J Soil Sc Plant Nutrition 11:85–95

    Google Scholar 

  • Quartacci MF, Baker AJM, Navari-Izzo F (2005) Nitrilitriacetate- and citric acid-assisted phytoextraction of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae). Chemosphere 59:1249–1255

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    Article  CAS  Google Scholar 

  • Sherene T (2010) Mobility and transport of heavy metals in polluted soil environment. Biol Forum - An Int J 2(2):112–121

    Google Scholar 

  • Ström L, Owen AG, Godbold DL, Jones DL (2001) Organic acid behaviour in a calcareous soil: sorption reactions and biodegradation rates. Soil Biol Biochem 33:2125–2133

    Article  Google Scholar 

  • Sun Y, Xu Y, Zhou Q, Wang L, Lin D, Liang X (2013) The potential of gibberellic acid 3 (GA3) and Tween-80 induced phytoremediation of co-contamination of Cd and Benzo[a]pyrene (B[a]P) using Tagetes patula. J Environ Manag 114:202–208

    Article  CAS  Google Scholar 

  • Sung K, Kim KS, Park S (2013) Enhancing Degradation of Total Petroleum Hydrocarbons and Uptake of Heavy Metals in a Wetland Microcosm Planted with Phragmites Communis by Humic Acids Addition. Int J Phytoremediat 15:536–549

    Article  CAS  Google Scholar 

  • Truchet G et al (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351:670–673

    Article  CAS  Google Scholar 

  • van Liedekerke M, Prokop G, Rabl-Berger S, Kibblewhite M, Louwagie G (2014) Progress in the management of Contaminated Sites in Europe. JRC Reference Reports, European Commission, Joint Research Centre

  • Wang X, Song Y, Ma Y, Zhuo R, Jin L (2011) Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.). Environ Pollut 159:3627–3633

    Article  CAS  Google Scholar 

  • White JC, Newman LA (2011) Phytoremediation of soils contaminated with organic pollutants. In: Xing B, Senesi N, Huang PM (eds) Biophysico-Chemical Processes of Anthropogenic Organic Compounds in Environmental Systems. John Wiley & Sons, Inc., Hoboken, pp 503–516

    Chapter  Google Scholar 

  • White JC, Mattina MJI, Lee WY, Eitzer BD, Ianucci-Berger W (2003) Role of organic acids in enhancing the desorption and uptake of weathered p,p'-DDE by Cucurbita pepo. Environ Pollut 124:71–80

    Article  CAS  Google Scholar 

  • Wiltse CC, Rooney WL, Chen Z, Schwab AP, Banks MK (1998) Greenhouse Evaluation of Agronomic and Crude Oil-Phytoremediation Potential among Alfalfa. Genotypes J Environ Qual 27:169–173

    Article  CAS  Google Scholar 

  • Wrenn BA, Venosa AD (1996) Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Can J Microbiol 42:252–258

    Article  CAS  Google Scholar 

  • Wu N, Zhang S, Huang H, Shan X-q, Christie P, Wang Y (2008) DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant. Environ Pollut 151:569–575

    Article  CAS  Google Scholar 

  • Zhang Y, Liu J, Zhou Y, Gong T, Liu Y, Wang J, Ge Y (2013) Enhanced Phytoremediation of Mixed Heavy Metal (Mercury)-Organic Pollutants (Trichloroethylene) with Transgenic Alfalfa Co-expressing Glutathione S-Transferase and Human P450 2E1. J Hazard Mater 260:1100–1107

    Article  CAS  Google Scholar 

  • Zhu L, Zhang M (2008) Effect of rhamnolipids on the uptake of PAHs by ryegrass. Environ Pollut 156:46–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support provided by French Île-de-France region and European Commission (Erasmus Mundus Joint Doctorate Programme ETeCoS3: Environmental Technologies for Contaminated Solids, Soils and Sediments, under the grant agreement FPA n°2010-0009). A.C. Agnello acknowledges the Mediterranean Office for Youth (MOY), which granted a 10-month mobility fellowship in the frame of the MOY labeled programs n°2010/038. Finally, the authors appreciate the contribution of Iwona M’Kenzie Hall, who provided English assistance during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Huguenot.

Additional information

Responsible editor: Elena Maestri

Highlights

• Alfalfa could grow on heavy metal and petroleum hydrocarbon co-contaminated soil.

• Alfalfa increased rhizosphere bacteria number and enzyme activity.

• Joint addition of amendments enhanced bacteria number and enzyme activity.

• Promising potential of alfalfa in phytoremediation of co-contaminated soils.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agnello, A.C., Huguenot, D., van Hullebusch, E.D. et al. Citric acid- and Tween® 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential. Environ Sci Pollut Res 23, 9215–9226 (2016). https://doi.org/10.1007/s11356-015-5972-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5972-7

Keywords

Navigation