Skip to main content
Log in

Degradation of benzophenone-3 by the ozonation in aqueous solution: kinetics, intermediates and toxicity

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Benzophenone-3 (BP-3) is a popular ultraviolet absorbing chemical and has an adverse impact on aquatic ecosystems and human health. We determined the reaction kinetic constants of BP-3 and its de-proton pattern reacting with the molecular ozone or hydroxyl radical (·OH) for the first time. The obtained constant of the molecular ozone reacting with BP-3 or BP-3 was 1.03(±0.21) × 102 or 1.85(±0.098) × 105 M−1 s−1, respectively. And, the constant for BP-3 reacting with ·OH was 9.74(±0.21) × 109 or 10.13(±0.25) × 109 M−1 s−1 as using 4-chlorobenzoic acid and benzotriazole as reference compounds, respectively. The intermediates generated in the molecular ozone (12 kinds) or ·OH oxidation (18 kinds) were identified by LC-MS/MS. The removal efficiency of BP-3 in ozonation was dependent on the initial concentration of ozone, BP-3, and matrix water quality. The detoxification of BP-3 ozonation was depended on initial ozone dose using Chlorella vulgaris as the probe. Higher ozone dose increased the toxicity of the solution for more BP-3 being degraded and more intermediates formed, suggesting that the sole ozonation is not an effect approach for the degradation of BP-3 and some other energy should be combined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bader H, Hoigné J (1981) Determination of ozone in water by the indigo method. Water Res 15:449–456

    Article  CAS  Google Scholar 

  • Balmer ME, Buser HR, Muller MD, Poiger T (2005) Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss lakes. Environ Sci Technol 39:953–962. doi:10.1021/es040055r

    Article  CAS  Google Scholar 

  • Benner J, Ternes TA (2009) Ozonation of metoprolol: elucidation of oxidation pathways and major oxidation products. Environ Sci Technol 43:5472–5480. doi:10.1021/es900280e

    Article  CAS  Google Scholar 

  • Deborde M, Rabouan S, Duguet JP, Legube B (2005) Kinetics of aqueous ozone-induced oxidation of some endocrine disruptors. Environ Sci Technol 39:6086–6092. doi:10.1021/es0501619

    Article  CAS  Google Scholar 

  • Diaz-Cruz MS, Gago-Ferrero P, Llorca M, Barcelo D (2012) Analysis of UV filters in tap water and other clean waters in Spain. Anal Bioanal Chem 402:2325–2333. doi:10.1007/s00216-011-5560-8

    Article  CAS  Google Scholar 

  • Dorrestijn E, Mulder P (1999) The radical-induced decomposition of 2-methoxyphenol. J Chem Soc Perkin Trans 2:777–780

    Article  Google Scholar 

  • Elovitz MS, von Gunten U (1999) Hydroxyl radical/ozone ratios during ozonation processes. I. The RctConcept. Ozone Sci Eng 21:239–260. doi:10.1080/01919519908547239

    Article  CAS  Google Scholar 

  • Essam T, Amin MA, Tayeb O EI, Mattiasson B, Guieysse B (2007) Solar-based detoxification of phenol and p-nitrophenol by sequential TiO2 photocatalysis and photosynthetically aerated biological treatment. Water Res 41:1697–1704. doi:10.1016/j.watres.2007.01.015

  • Gago-Ferrero P, Demeestere K, Diaz-Cruz MS, Barcelo D (2013) Ozonation and peroxone oxidation of benzophenone-3 in water: effect of operational parameters and identification of intermediate products. Sci Total Environ 443:209–217. doi:10.1016/j.scitotenv.2012.10.006

    Article  CAS  Google Scholar 

  • Gordon G, Rakness K, Vornehm D, Wood D (2014) Limitations of the iodometric determination of ozone. J Am Water Works Assoc 106:16

    Google Scholar 

  • Hauri U, Luetolf B, Hohl C (2002) Determination of organic sunscreen filters in cosmetics with HPLC/DAD. Mitt Lebensmitteluntersuchung Hyg 94:80–92

    Google Scholar 

  • Hernandez-Leal L, Temmink H, Zeeman G, Buisman CJ (2011) Removal of micropollutants from aerobically treated grey water via ozone and activated carbon. Water Res 45:2887–2896. doi:10.1016/j.watres.2011.03.009

    Article  CAS  Google Scholar 

  • Hsu YC, Yang HC, Chen JH (2004) The enhancement of the biodegradability of phenolic solution using preozonation based on high ozone utilization. Chemosphere 56:149–158. doi:10.1016/j.chemosphere.2004.02.011

    Article  CAS  Google Scholar 

  • Kameda Y, Kimura K, Miyazaki M (2011) Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes. Environ Pollut 159:1570–1576. doi:10.1016/j.envpol.2011.02.055

    Article  CAS  Google Scholar 

  • Kuang J, Huang J, Wang B, Cao Q, Deng S, Yu G (2013) Ozonation of trimethoprim in aqueous solution: identification of reaction products and their toxicity. Water Res 47:2863–2872. doi:10.1016/j.watres.2013.02.048

    Article  CAS  Google Scholar 

  • Kunisue T, Chen Z, Buck Louis GM, Sundaram R, Hediger ML, Sun L, Kannan K (2012) Urinary concentrations of benzophenone-type UV filters in U.S. women and their association with endometriosis. Environ Sci Technol 46:4624–4632. doi:10.1021/es204415a

    Article  CAS  Google Scholar 

  • Leitner NKV, Roshani B (2010) Kinetic of benzotriazole oxidation by ozone and hydroxyl radical. Water Res 44:2058–2066. doi:10.1016/j.watres.2009.12.018

    Article  Google Scholar 

  • Li W, Ma Y, Guo C, Hu W, Liu K, Wang Y, Zhu T (2007) Occurrence and behavior of four of the most used sunscreen UV filters in a wastewater reclamation plant. Water Res 41:3506–3512. doi:10.1016/j.watres.2007.05.039

    Article  CAS  Google Scholar 

  • Li HN, Xu BB, Qi F, Sun DZ, Chen ZL (2014) Degradation of bezafibrate in wastewater by catalytic ozonation with cobalt doped red mud: efficiency, intermediates and toxicity. Appl Catal B Environ 152–153:342–351. doi:10.1016/j.apcatb.2014.01.058

    Article  Google Scholar 

  • Liu YS, Ying GG, Shareef A, Kookana RS (2012a) Biodegradation of the ultraviolet filter benzophenone-3 under different redox conditions. Environ Toxicol Chem / SETAC 31:289–295. doi:10.1002/etc.749

    Article  CAS  Google Scholar 

  • Liu YS, Ying GG, Shareef A, Kookana RS (2012b) Occurrence and removal of benzotriazoles and ultraviolet filters in a municipal wastewater treatment plant. Environ Pollut 165:225–232. doi:10.1016/j.envpol.2011.10.009

    Article  CAS  Google Scholar 

  • Ma J, Graham NJ (1999) Degradation of atrazine by manganese-catalysed ozonation: influence of humic substances. Water Res 33:785–793

    Article  CAS  Google Scholar 

  • Mardis K, Glemza A, Brune B, Payne G, Gilson M (1999) Differential adsorption of phenol derivatives onto a polymeric sorbent: a combined molecular modeling and experimental study. J Phys Chem B 103:9879–9887

    Article  CAS  Google Scholar 

  • Miner G (2005) Ozone reaction kinetics for water and wastewater systems. Am Water Works Assoc 97:105–106

    Google Scholar 

  • Mvula E, von Sonntag C (2003) Ozonolysis of phenols in aqueous solution. Org Biomol Chem 1:1749–1756

    Article  CAS  Google Scholar 

  • Negreira N, Canosa P, Rodriguez I, Ramil M, Rubi E, Cela R (2008) Study of some UV filters stability in chlorinated water and identification of halogenated by-products by gas chromatography–mass spectrometry. J Chromatogr A 1178:206–214. doi:10.1016/j.chroma.2007.11.057

    Article  CAS  Google Scholar 

  • Ning B, Graham NJ, Zhang Y (2007a) Degradation of octylphenol and nonylphenol by ozone—part I: direct reaction. Chemosphere 68:1163–1172. doi:10.1016/j.chemosphere.2007.01.055

    Article  CAS  Google Scholar 

  • Ning B, Graham NJ, Zhang Y (2007b) Degradation of octylphenol and nonylphenol by ozone—part II: indirect reaction. Chemosphere 68:1173–1179. doi:10.1016/j.chemosphere.2007.01.056

    Article  CAS  Google Scholar 

  • OECD(201) (2006) OECD guidelines for the testing of chemicals

  • Park H, Choi H (2011) As(III) removal by hybrid reactive membrane process combined with ozonation. Water Res 45:1933–1940. doi:10.1016/j.watres.2010.12.024

    Article  CAS  Google Scholar 

  • Poiger T, Buser HR, Balmer ME, Bergqvist PA, Muller MD (2004) Occurrence of UV filter compounds from sunscreens in surface waters: regional mass balance in two Swiss lakes. Chemosphere 55:951–963. doi:10.1016/j.chemosphere.2004.01.012

    Article  CAS  Google Scholar 

  • Qi F, Xu BB, Chen ZL, Ma J, Sun DZ, Zhang LQ (2009) Efficiency and products investigations on the ozonation of 2-methylisoborneol in drinking water. Water Environ Res 81:2411–2419. doi:10.2175/106143009x425933

    Article  CAS  Google Scholar 

  • Rakness KL (2011) Ozone in drinking water treatment: process design, operation, and optimization. American Water Works Association

  • Rodil R, Quintana JB, Concha-Grana E, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodriguez D (2012) Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere 86:1040–1049. doi:10.1016/j.chemosphere.2011.11.053

    Article  CAS  Google Scholar 

  • Rosal R, Rodríguez A, Perdigón-Melón JA, et al. (2010) Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res 44:578–588. doi:10.1016/j.watres.2009.07.004

    Article  CAS  Google Scholar 

  • Snyder SA, Wert EC, Rexing DJ, Zegers RE, Drury DD (2006) Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water and wastewater. Ozone Sci Eng 28:445–460. doi:10.1080/01919510601039726

    Article  CAS  Google Scholar 

  • Sotelo JL, Beltran FJ, Benitez FJ, Beltran-Heredia J (1987) Ozone decomposition in water: kinetic study. Ind Eng Chem Res 26:39–43

    Article  CAS  Google Scholar 

  • Staehelin J, Hoigne J (1985) Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environm Sci Technol 19:1206–1213

    Article  CAS  Google Scholar 

  • Standardisation IOf (1993) ISO 8692 Water quality—algal growth inhibition test

  • Suarez S, Dodd MC, Omil F, von Gunten U (2007) Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation. Water Res 41:2481–2490. doi:10.1016/j.watres.2007.02.049

    Article  CAS  Google Scholar 

  • Suzuki T, Kitamura S, Khota R, Sugihara K, Fujimoto N, Ohta S (2005) Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens. Toxicol Appl Pharmacol 203:9–17. doi:10.1016/j.taap.2004.07.005

    Article  CAS  Google Scholar 

  • Vione D, Caringella R, De Laurentiis E, Pazzi M, Minero C (2013) Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters. Sci Total Environ 463–464:243–251. doi:10.1016/j.scitotenv.2013.05.090

    Article  Google Scholar 

  • Xu BB, Chen ZL, Qi F, Ma J, Wu FC (2010) Comparison of N-nitrosodiethylamine degradation in water by UV irradiation and UV/O3: efficiency, product and mechanism. J Hazard Mater 179:976–982. doi:10.1016/j.jhazmat.2010.03.100

    Article  CAS  Google Scholar 

  • Yang B, Ying G-G (2013) Oxidation of benzophenone-3 during water treatment with ferrate(VI). Water Res 47:2458–2466. doi:10.1016/j.watres.2013.02.018

    Article  CAS  Google Scholar 

  • Yoon Y, Westerhoff P, Snyder SA, Wert EC (2006) Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J Membr Sci 270:88–100. doi:10.1016/j.memsci.2005.06.045

    Article  CAS  Google Scholar 

  • Zwiener C, Richardson SD, DeMarini DM, Grummt T, Glauner T (2008) Drowning in disinfection byproducts? Assessing swimming pool water (vol 41, pg 363, 2007). Environ Sci Technol 42:1812. doi:10.1021/es702871c

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of the Fundamental Research Funds for  the  Central  Universities  (No.  2015ZCQ-HJ-02), Beijing Natural Science Foundation (No. 8132033), and the National Natural Science Foundation of China (Nos. 51578520, 51378063, 41273137, and 51108030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingbing Xu or Fei Qi.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1.76 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Lin, Q., Xu, B. et al. Degradation of benzophenone-3 by the ozonation in aqueous solution: kinetics, intermediates and toxicity. Environ Sci Pollut Res 23, 7962–7974 (2016). https://doi.org/10.1007/s11356-015-5941-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5941-1

Keyword

Navigation