Skip to main content

Advertisement

Log in

Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Rapid increase of CO2 concentration in the atmosphere has forced the international community towards adopting actions to restrain from the impacts of climate change. Moreover, in India, the dependence on fossil fuels is projected to increase in the future, implying the necessity of capturing CO2 in a safe manner. Alkaline solid wastes can be utilized for CO2 sequestration by which its disposal issues in the country could also be met. The present work focuses to study direct mineral carbonation of steelmaking slag (SS) at room temperature and low-pressure conditions (<10 bar). Direct mineral carbonation of SS was carried out in a batch reactor with pure CO2 gas. The process parameters that may influence the carbonation of SS, namely, CO2 gas pressure, liquid to solid ratio (L/S) and reaction time were also studied. The results showed that maximum sequestration of SS was attained in the aqueous route with a capacity of 82 g of CO2/kg (6 bar, L/S ratio of 10 and 3 h). In the gas-solid route, maximum sequestration capacity of about 11.1 g of CO2/kg of SS (3 bar and 3 h) was achieved indicating that aqueous route is the better one under the conditions studied. These findings demonstrate that SS is a promising resource and this approach could be further developed and used for CO2 sequestration in the country. The carbonation process was evidenced using FT-IR, XRD, SEM and TG analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baciocchi R, Costa G, Polettini A, Pomi R (2009) Influence of particle size on the carbonation of stainless steel slag for CO2 storage. Energy Procedia 1(1):4859–4866

    Article  CAS  Google Scholar 

  • Baciocchi R, Costa G, Bartolomeo ED, Polettini A, Pomi R (2010) Carbonation of stainless steel slag as a process for CO2 storage and slag valorization. Waste Biomass Valor 1:467–477

    Article  CAS  Google Scholar 

  • Bobicki ER, Liu Q, Xu Z, Zeng H (2012) Carbon capture and storage using alkaline industrial wastes. Prog Energy Combust Sci 38(2):302–320

    Article  CAS  Google Scholar 

  • Chang EE, Pan SY, Chen YH, Chu HW, Wang CF, Chiang PC (2011) CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor. J Hazard Mater 195:107–114

    Article  CAS  Google Scholar 

  • Fernandez Bertos M, Li X, Simons JR, Hills CD, Carey PJ (2004) Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2. Green Chem 6(8):428–436

    Article  CAS  Google Scholar 

  • Global steel 2013: a new world, a new strategy (2013). Elliott M, Agrawal A, Assis C, Stall B, Mangers P, Beifus A. Ernst and Young, UK

  • Hetland J, Anantharaman R (2009) Carbon capture and storage (CCS) options for co-production of electricity and synthetic fuels from indigenous coal in an Indian context. Energy Sustain Dev 13(1):56–63

    Article  CAS  Google Scholar 

  • Huijgen WJJ, Witkamp GJ, Comans RNJ (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39:9676–9682

    Article  CAS  Google Scholar 

  • Huijgen WJJ, Ruijg GJ, Comans RNJ, Witkamp GJ (2006) Energy consumption and net CO2 sequestration of aqueous mineral carbonation. Ind Eng Chem Res 45:9184–9194

    Article  CAS  Google Scholar 

  • Indian Network for Climate Change Assessment (INCCA) (2010) Ministry of environment and forests. Greenhouse Gas Emissions, India

    Google Scholar 

  • International Energy Agency (2013) World Energy Outlook 2013 (WEO 2013). OECD publishing, Paris. doi:http://dx.doi.org/10.1787/weo-2013-en

  • Mathew P, Stephen L, George J (2013) Steel slag ingredient for concrete pavement. Int J Innov Res Sci Eng Technol 2(3):710–714

    Google Scholar 

  • Mazzotti M, Abanades JC, Allam R, Lackner KS, Meunier F, Rubin E et al (2005) Mineral carbonation and industrial uses of carbon dioxide. In: IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge, UK, Chapter 7

    Google Scholar 

  • Montes-Hernandez G, Perez-Lopez R, Renard F, Nietob JM, Charlet L (2009) Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161(1-2):1347–1354

    Article  CAS  Google Scholar 

  • Nyambura MG, Mugera GW, Felicia PL, Gathura NP (2011) Carbonation of brine impacted fractionated coal fly ash: implications for CO2 sequestration. J Environ Manage 92(3):655–664

    Article  CAS  Google Scholar 

  • Palaciosw M, Puertas F (2006) Effect of carbonation on alkali-activated slag paste. J Am Ceram Soc 89(10):3211–3221

    Article  Google Scholar 

  • Pan SY, Chang EE, Chiang PC (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12(5):770–791

    CAS  Google Scholar 

  • Pappu A, Saxena M, Asolekar SR (2007) Solid wastes generation in India and their recycling potential in building materials. Build Environ 42(6):2311–2320

    Article  Google Scholar 

  • Pires JCM, Martins FG, Alvim-Ferraz MCM, Simoes M (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89:1446–1460

    Article  CAS  Google Scholar 

  • Sahu RC, Patel R, Ray BC (2010) Neutralization of red mud using CO2 sequestration cycle. J Hazard Mater 179(1-3):28–34

    Article  CAS  Google Scholar 

  • Salman M, Cizer O, Pontikes Y, Santos RM, Snellings R, Vandewalle L, Blanpain B, Balen KV (2014) Effect of accelerated carbonation on AOD stainless slag for its valorization as a CO2 sequestering construction material. Chem Eng J 246:39–52

    Article  CAS  Google Scholar 

  • Santos RM, Francois D, Mertens G, Elsen J, Gerven TV (2013) Ultra-sound intensified mineral carbonation. Appl Thermal Eng 57(1-2):154–163

    Article  CAS  Google Scholar 

  • Sarkar R, Singh N, Das SK (2010) Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles. Bull Mater Sci 33(3):293–298

    Article  CAS  Google Scholar 

  • Tamilselvi Dananjayan RR, Kandasamy P, Andimuthu R (2015) Direct mineral carbonation of coal fly ash for CO2 sequestration. J Clean Prod. doi:10.10010.1016/ j.jclepro.2015.05.145.

  • Tian S, Jiang J, Chen X, Yan F, Li K (2013) Direct gas–solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO2 in steel-making plants. Chem Sus Chem 6(12):2348–2355

    Article  CAS  Google Scholar 

  • Tian S, Jiang J, Yan F, Li K, Chen X (2015) Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure reforming of steel slag. Environ Sci Technol 49:7464–7472

    Article  CAS  Google Scholar 

  • Uibu M, Kuusik R, Andreas L, Kirsimae K (2011) The CO2-binding by Ca-Mg-silicates in direct aqueous carbonation of oil shale ash and steel slag. Energy Procedia 4:925–932

    Article  CAS  Google Scholar 

  • Viebahn P, Holler S, Vallentin D, Liptow H, Villar A (2011) Future CCS implementation in India: a systemic and long-term Analysis. Energy Procedia 4:2708–2715

    Article  Google Scholar 

  • Working Group I Contribution to the IPCC 5th Assessment Report (AR5): Climate change 2013: the physical science basis (2013) Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Yadav VS, Prasad M, Khan J, Amritphale SS, Singh M, Raju CB (2010) Sequestration of carbon dioxide (CO2) using red mud. J Hazard Mater 176(1-3):1044–1050

    Article  CAS  Google Scholar 

  • Zevenhoven R, Teir S, Elonev S (2008) Heat optimization of a staged gas–solid mineral carbonation process for long-term CO2 storage. Energy 33(2):362–370

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to “Department of Science and Technology” (DST), New Delhi, India, for financial support (Ref N0.DST/IS-STAC/CO2-SR-56/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Rushendra Revathy.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rushendra Revathy, T.D., Palanivelu, K. & Ramachandran, A. Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature. Environ Sci Pollut Res 23, 7349–7359 (2016). https://doi.org/10.1007/s11356-015-5893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5893-5

Keywords

Navigation