Environmental Science and Pollution Research

, Volume 23, Issue 7, pp 6400–6413 | Cite as

Atmospheric pollutants in peri-urban forests of Quercus ilex: evidence of pollution abatement and threats for vegetation

  • Héctor García-GómezEmail author
  • Laura Aguillaume
  • Sheila Izquieta-Rojano
  • Fernando Valiño
  • Anna Àvila
  • David Elustondo
  • Jesús M. Santamaría
  • Andrés Alastuey
  • Héctor Calvete-Sogo
  • Ignacio González-Fernández
  • Rocío Alonso
Research Article


Peri-urban vegetation is generally accepted as a significant remover of atmospheric pollutants, but it could also be threatened by these compounds, with origin in both urban and non-urban areas. To characterize the seasonal and geographical variation of pollutant concentrations and to improve the empirical understanding of the influence of Mediterranean broadleaf evergreen forests on air quality, four forests of Quercus ilex (three peri-urban and one remote) were monitored in different areas in Spain. Concentrations of nitrogen dioxide (NO2), ammonia (NH3), nitric acid (HNO3) and ozone (O3) were measured during 2 years in open areas and inside the forests and aerosols (PM10) were monitored in open areas during 1 year. Ozone was the only air pollutant expected to have direct phytotoxic effects on vegetation according to current thresholds for the protection of vegetation. The concentrations of N compounds were not high enough to directly affect vegetation but could be contributing through atmospheric N deposition to the eutrophization of these ecosystems. Peri-urban forests of Q. ilex showed a significant below-canopy reduction of gaseous concentrations (particularly NH3, with a mean reduction of 29–38 %), which indicated the feasibility of these forests to provide an ecosystem service of air quality improvement. Well-designed monitoring programs are needed to further investigate air quality improvement by peri-urban ecosystems while assessing the threat that air pollution can pose to vegetation.


Atmospheric pollution Nitrogen Ozone Aerosols Ecosystem services Mediterranean vegetation 



This research was funded by the Spanish project EDEN (CGL2009-13188-C03-02), by the project from Autonomous Government of Madrid AGRISOST-CM (P2013/ABI-2717) and by the European Projects ECLAIRE (FP7-ENV-2011/282910) and Life RESPIRA (LIFE13 ENV/ES/000417). This study was also supported by the Ministry of Agriculture, Food and Environment (Resolución 15398, BOE no. 230). The authors would like to acknowledge the Department of Environment (DGQA) of the Autonomous Government of Catalonia for performing the active monitoring of air pollutants at LC (“MSY” station from GAW/ACTRIS monitoring networks) and thank the Government of Navarre for providing valuable data on air quality. We sincerely acknowledge the two anonymous reviewers for a very constructive revision of our work.

Supplementary material

11356_2015_5862_MOESM1_ESM.pdf (862 kb)
ESM 1 (PDF 862 kb)
11356_2015_5862_MOESM2_ESM.jpg (27.6 mb)
ESM 2 (JPG 28288 kb)


  1. Alonso R, Elvira S, Sanz MJ et al (2008) Sensitivity analysis of a parameterization of the stomatal component of the DO3SE model for Quercus ilex to estimate ozone fluxes. Environ Pollut 155:473–480. doi: 10.1016/j.envpol.2008.01.032 CrossRefGoogle Scholar
  2. Alonso R, Vivanco MG, González-Fernández I et al (2011) Modelling the influence of peri-urban trees in the air quality of Madrid region (Spain). Environ Pollut 159:2138–2147. doi: 10.1016/j.envpol.2010.12.005 CrossRefGoogle Scholar
  3. Alonso R, Elvira S, González-Fernández I et al (2014) Drought stress does not protect Quercus ilex L. from ozone effects: results from a comparative study of two subspecies differing in ozone sensitivity. Plant Biol 16:375–384. doi: 10.1111/plb.12073 CrossRefGoogle Scholar
  4. Altimir N, Kolari P, Tuovinen J-P et al (2006) Foliage surface ozone deposition: a role for surface moisture? Biogeosciences Discuss 2:1739–1793. doi: 10.5194/bgd-2-1739-2005 CrossRefGoogle Scholar
  5. Anatolaki C, Tsitouridou R (2007) Atmospheric deposition of nitrogen, sulfur and chloride in Thessaloniki, Greece. Atmos Res 85:413–428. doi: 10.1016/j.atmosres.2007.02.010 CrossRefGoogle Scholar
  6. Behera SN, Sharma M, Aneja VP, Balasubramanian R (2013) Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ Sci Pollut Res 20:8092–8131. doi: 10.1007/s11356-013-2051-9 CrossRefGoogle Scholar
  7. Bytnerowicz A, Fenn ME (1996) Nitrogen deposition in California forests : a review. Environ Pollut 92:127–146CrossRefGoogle Scholar
  8. Bytnerowicz A, Padgett P, Percy K et al (1999) Direct effects of nitric acid on forest trees. In: Miller PR (ed) Oxidant air pollution impacts in the montane forests of Southern California (Ecological Studies 134). Springer, New York, pp 270–287CrossRefGoogle Scholar
  9. Bytnerowicz A, Sanz M, Arbaugh M et al (2005) Passive sampler for monitoring ambient nitric acid (HNO) and nitrous acid (HNO) concentrations. Atmos Environ 39:2655–2660. doi: 10.1016/j.atmosenv.2005.01.018 CrossRefGoogle Scholar
  10. Bytnerowicz A, Fraczek W, Schilling S, Alexander D (2010) Spatial and temporal distribution of ambient nitric acid and ammonia in the Athabasca Oil Sands Region, Alberta. J Limnol 69:11–21. doi: 10.3274/JL10-69-S1-03 CrossRefGoogle Scholar
  11. Calfapietra C, Fares S, Manes F et al (2013) Role of biogenic volatile organic compounds (BVOC) emitted by urban trees on ozone concentration in cities: a review. Environ Pollut 183:71–80. doi: 10.1016/j.envpol.2013.03.012 CrossRefGoogle Scholar
  12. Calvete-Sogo H, Elvira S, Sanz J et al (2014) Current ozone levels threaten gross primary production and yield of Mediterranean annual pastures and nitrogen modulates the response. Atmos Environ 95:197–206. doi: 10.1016/j.atmosenv.2014.05.073 CrossRefGoogle Scholar
  13. Cape JN, van der Eerden LJ, Sheppard LJ et al (2009) Evidence for changing the critical level for ammonia. Environ Pollut 157:1033–7. doi: 10.1016/j.envpol.2008.09.049 CrossRefGoogle Scholar
  14. Cavanagh JAE, Zawar-Reza P, Wilson JG (2009) Spatial attenuation of ambient particulate matter air pollution within an urbanised native forest patch. Urban For Urban Green 8:21–30. doi: 10.1016/j.ufug.2008.10.002 CrossRefGoogle Scholar
  15. Chaparro-Suarez IGG, Meixner FXX, Kesselmeier J (2011) Nitrogen dioxide (NO2) uptake by vegetation controlled by atmospheric concentrations and plant stomatal aperture. Atmos Environ 45:5742–5750. doi: 10.1016/j.atmosenv.2011.07.021 CrossRefGoogle Scholar
  16. CLRTAP (2011) Mapping critical levels for vegetation. In: UNECE Convention on Long-range Transboundary Air Pollution (ed) Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads & Levels and Air Pollution Effects, Risks and Trends. Available at:
  17. Cristofanelli P, Bonasoni P (2009) Background ozone in the southern Europe and Mediterranean area: influence of the transport processes. Environ Pollut 157:1399–1406. doi: 10.1016/j.envpol.2008.09.017 CrossRefGoogle Scholar
  18. Danalatos D, Glavas S (1999) Gas phase nitric acid, ammonia and related particulate matter at a Mediterranean coastal site, Patras, Greece. Atmos Environ 33:3417–3425. doi: 10.1016/S1352-2310(98)00342-2 CrossRefGoogle Scholar
  19. Dise NB, Ashmore M, Belyazid S, et al. (2011) Nitrogen as a threat to European terrestrial biodiversity. In: Sutton MA, et al. (eds) The European nitrogen assessment. Sources, effects and policy perspectives. Cambridge University Press, Cambridge, pp. 463–494.Google Scholar
  20. Domínguez-López D, Adame JA, Hernández-Ceballos MA et al (2014) Spatial and temporal variation of surface ozone, NO and NO2 at urban, suburban, rural and industrial sites in the southwest of the Iberian Peninsula. Environ Monit Assess 186:5337–5351. doi: 10.1007/s10661-014-3783-9 CrossRefGoogle Scholar
  21. EEA (2013) Air quality in Europe—2013 report (EEA Report No 9/2013).Google Scholar
  22. EEA (2014) Airbase v8. Available at: (last accessed 15.10.14), European Environmental Agency.
  23. Escudero M, Castillo S, Querol X et al (2005) Wet and dry African dust episodes over eastern Spain. J Geophys Res D Atmos 110:1–15. doi: 10.1029/2004JD004731 CrossRefGoogle Scholar
  24. Escudero M, Lozano A, Hierro J et al (2014) Urban influence on increasing ozone concentrations in a characteristic Mediterranean agglomeration. Atmos Environ 99:322–332. doi: 10.1016/j.atmosenv.2014.09.061 CrossRefGoogle Scholar
  25. Fares S, Savi F, Muller J et al (2014) Simultaneous measurements of above and below canopy ozone fluxes help partitioning ozone deposition between its various sinks in a Mediterranean Oak Forest. Agric For Meteorol 198–199:181–191. doi: 10.1016/j.agrformet.2014.08.014 CrossRefGoogle Scholar
  26. Fondazione Salvatore Maugeri (2006) Instruction manual for Radiello sampler. Edition 01/2006.
  27. Fowler D (2002) Pollutant deposition and uptake by vegetation. In: Bell JNB, Treshow M (eds) Air pollution and plant life, 2nd edn. John Wiley & Sons Ltd, Chichester, pp 43–67Google Scholar
  28. Fowler D, Pitcairn CER, Sutton MA et al (1998) The mass budget of atmospheric ammonia in woodland within 1 km of livestock buildings. Environ Pollut 102:343–348CrossRefGoogle Scholar
  29. Fowler D, Pilegaard K, Sutton MA et al (2009) Atmospheric composition change: ecosystems–atmosphere interactions. Atmos Environ 43:5193–5267. doi: 10.1016/j.atmosenv.2009.07.068 CrossRefGoogle Scholar
  30. García-Gómez H, Garrido JL, Vivanco MG et al (2014) Nitrogen deposition in Spain: modeled patterns and threatened habitats within the Natura 2000 network. Sci Total Environ 485–486:450–60. doi: 10.1016/j.scitotenv.2014.03.112 CrossRefGoogle Scholar
  31. Geiser LH, Jovan SE, Glavich D, Porter MK (2010) Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington Forests, USA. Environ Pollut 158:2412–2421. doi: 10.1016/j.envpol.2010.04.001 CrossRefGoogle Scholar
  32. Gerosa G, Fusaro L, Monga R et al (2015) A flux-based assessment of above and below ground biomass of holm oak (Quercus ilex L.) seedlings after one season of exposure to high ozone concentrations. Atmos Environ 113:41–49. doi: 10.1016/j.atmosenv.2015.04.066 CrossRefGoogle Scholar
  33. Grundström M, Pleijel H (2014) Limited effect of urban tree vegetation on NO2 and O3 concentrations near a traffic route. Environ Pollut 189:73–6. doi: 10.1016/j.envpol.2014.02.026 CrossRefGoogle Scholar
  34. Harris TB, Manning WJ (2010) Nitrogen dioxide and ozone levels in urban tree canopies. Environ Pollut 158:2384–6. doi: 10.1016/j.envpol.2010.04.007 CrossRefGoogle Scholar
  35. Hereter A, Sánchez JR (1999) Experimental areas of Prades and Montseny. In: Rodà F et al (eds) Ecology of Mediterranean evergreen oak forests. Springer, New York, pp 15–28CrossRefGoogle Scholar
  36. Hjellbrekke A-G (2014) Data report 2012. Acidifying and eutrophying compounds and particulate matter (EMEP/CCC, 03/2014). Edited by Norwegian Institute for Air Research (NILU)–Chemical Coordination Center of EMEP (CCC), Oslo.Google Scholar
  37. Jovan S, Riddell J, Padgett PE, Nash TH (2012) Eutrophic lichens respond to multiple forms of N: implications for critical levels and critical loads research. Ecol Appl 22:1910–22CrossRefGoogle Scholar
  38. Karanasiou A, Querol X, Alastuey A et al (2014) Particulate matter and gaseous pollutants in the Mediterranean Basin: results from the MED-PARTICLES project. Sci Total Environ 488–489:297–315. doi: 10.1016/j.scitotenv.2014.04.096 CrossRefGoogle Scholar
  39. Kroeger T, Escobedo FJ, Hernandez JL et al (2014) Reforestation as a novel compliance measure in State Implementation Plans for ground-level ozone. Proc Natl Acad Sci U S A 52:1–43. doi: 10.1073/pnas.1409785111 Google Scholar
  40. MAGRAMA (2014) Banco Público de Indicadores Ambientales. Edited by Spanish Ministry of Agriculture, Food and Environment (MAGRAMA). Available at
  41. Massad R-S, Nemitz E, Sutton MA (2010) Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere. Atmos Chem Phys 10:10359–10386. doi: 10.5194/acp-10-10359-2010 CrossRefGoogle Scholar
  42. Millán MM, Sanz MJ, Salvador R, Mantilla E (2002) Atmospheric dynamics and ozone cycles related to nitrogen deposition in the western Mediterranean. Environ Pollut 118:167–186CrossRefGoogle Scholar
  43. Nowak DJ, Hirabayashi S, Bodine A, Greenfield E (2014) Tree and forest effects on air quality and human health in the United States. Environ Pollut 193:119–129. doi: 10.1016/j.envpol.2014.05.028 CrossRefGoogle Scholar
  44. Padgett PE, Parry SD, Bytnerowicz A, Heath RL (2009) Image analysis of epicuticular damage to foliage caused by dry deposition of the air pollutant nitric acid. J Environ Monit 11:63–74. doi: 10.1039/b804875d CrossRefGoogle Scholar
  45. Pey J, Perez N, Castillo S et al (2009) Geochemistry of regional background aerosols in the Western Mediterranean. Atmos Res 94:422–435CrossRefGoogle Scholar
  46. Pinho P, Theobald MR, Dias T et al (2012) Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. Biogeosciences 9:1205–1215. doi: 10.5194/bg-9-1205-2012 CrossRefGoogle Scholar
  47. Plaisance H (2011) The effect of the wind velocity on the uptake rates of various diffusive samplers. Int J Environ Anal Chem 91:1341–1352. doi: 10.1080/03067311003782625 CrossRefGoogle Scholar
  48. Querol X, Alastuey A, Moreno T et al (2008) Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmos Environ 42:3964–3979CrossRefGoogle Scholar
  49. Reche C, Viana M, Karanasiou A et al (2014) Urban NH3 levels and sources in six major Spanish cities. Chemosphere 119C:769–777. doi: 10.1016/j.chemosphere.2014.07.097 Google Scholar
  50. Rodríguez S, Querol X, Alastuey A, Mantilla E (2002) Origin of high summer PM10 and TSP concentrations at rural sites in Eastern Spain. Atmos Environ 36:3101–3112. doi: 10.1016/S1352-2310(02)00256-X CrossRefGoogle Scholar
  51. Setälä H, Viippola V, Rantalainen A-LL et al (2013) Does urban vegetation mitigate air pollution in northern conditions? Environ Pollut 183:104–112. doi: 10.1016/j.envpol.2012.11.010 CrossRefGoogle Scholar
  52. Sgrigna G, Sæbø A, Gawronski S et al (2015) Particulate matter deposition on Quercus ilex leaves in an industrial city of central Italy. Environ Pollut 197:187–194. doi: 10.1016/j.envpol.2014.11.030 CrossRefGoogle Scholar
  53. Sparks JP (2009) Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia 159:1–13. doi: 10.1007/s00442-008-1188-6 CrossRefGoogle Scholar
  54. The Royal Society (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. Edited by: Fowler D, et al. R. Soc., London.Google Scholar
  55. Tzanis C, Varotsos C, Ferm M et al (2009) Nitric acid and particulate matter measurements at Athens, Greece, in connection with corrosion studies. Atmos Chem Phys Discuss 9:14683–14711. doi: 10.5194/acpd-9-14683-2009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Héctor García-Gómez
    • 1
    Email author
  • Laura Aguillaume
    • 2
  • Sheila Izquieta-Rojano
    • 4
  • Fernando Valiño
    • 1
  • Anna Àvila
    • 3
  • David Elustondo
    • 4
  • Jesús M. Santamaría
    • 4
  • Andrés Alastuey
    • 5
  • Héctor Calvete-Sogo
    • 1
  • Ignacio González-Fernández
    • 1
  • Rocío Alonso
    • 1
  1. 1.Ecotoxicology of Air PollutionCIEMATMadridSpain
  2. 2.CREAFCerdanyola del VallèsSpain
  3. 3.Universitat Autònoma de Barcelona (UAB)Cerdanyola del VallèsSpain
  4. 4.LICAUniversidad de NavarraPamplonaSpain
  5. 5.Institute of Environmental Assessment and Water Research (IDAEA-CSIC)BarcelonaSpain

Personalised recommendations