Skip to main content
Log in

Nanoscale zerovalent iron-mediated degradation of DDT in soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nanoscale zerovalent iron (nZVI)-mediated degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) was investigated in a spiked soil under different conditions (iron sources, iron dosage, soil moisture, temperature, and soil types) and DDT-contaminated field. The degradation efficiency of p,p′-DDT by nZVI and nZVI coated with sodium oleate (SO-nZVI) was much higher than that by nZVI coated with polyimide (PI-nZVI). The rapid degradation of p,p′-DDT by nZVI only occurred in flooded soil. The degradation half-life of p,p′-DDT decreased significantly from 58.3 to 27.6 h with nZVI dosage from 0.5 to 2.0 % and from 46.5 to 32.0 h with temperature from 15 to 35 °C. The degradation efficiency of p,p′-DDT by nZVI differed in Jinhua (JH), Jiaxing (JX), Xiaoshan (XS), Huajiachi (HJC), and Heilongjiang (HLJ) soils. A good correlation was found between the degradation half-life of p,p′-DDT and multiple soil properties. The probable nZVI-mediated degradation pathway of p,p′-DDT in soil was proposed as DDT → DDD/DDE → DDNS → DDOH based on the metabolites identified by GC-MS. The in situ degradation efficiency of residual DDTs in a contaminated field was profoundly enhanced by the addition of nZVI as compared to the control. It is concluded that nZVI might be an efficient agent for the remediation of DDT-contaminated soil under anaerobic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chen X, Yao XY, Yu CN, Su XM, Shen CF, Chen C, Huang RL, Xu XH (2014) Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles. Environ Sci Pollut Res 21(7):5201–5210

    Article  CAS  Google Scholar 

  • Eganhouse RP, Pontolillo J, Leiker TJ (2000) Diagenetic fate of organic contaminants on the Palos Verdes Shelf, California. Mar Chem 70(4):289–315

    Article  CAS  Google Scholar 

  • Eggen T, Majcherczyk A (2006) Effects of zero-valent iron (Fe-0) and temperature on the transformation of DDT and its metabolites in lake sediment. Chemosphere 62(7):1116–1125

    Article  CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2013) Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembolan and ostracods. Chemosphere 92(1):131–137

    Article  CAS  Google Scholar 

  • El-Temsah YS, Oughton DH, Joner EJ (2013) Effects of nano-sized zero-valent iron on DDT degradation and residual toxicity in soil: a column experiment. Plant Soil 368(1–2):189–200

    Article  CAS  Google Scholar 

  • Gao F, Jia JY, Wang XM (2008) Occurrence and ordination of dichlorodiphenyltrichloroethane and hexachlorocyclohexane in agricultural soils from Guangzhou, China. Arch Environ Contam Toxicol 54(2):155–166

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ottosen LM, Ribeiro AB (2014) Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants. J Colloid Interface Sci 433:189–195

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ottosen LM, Ribeiro AB (2015) Electroremediation of PCB contaminated soil combined with iron nanoparticles: effect of the soil type. Chemosphere 131:157–163

    Article  CAS  Google Scholar 

  • Guo Y, Yu HY, Zeng EY (2009) Occurrence, source diagnosis, and biological effect assessment of DDT and its metabolites in various environmental compartments of the Pearl River Delta, South China: a review. Environ Pollut 157(6):1753–1763

    Article  CAS  Google Scholar 

  • He N, Li P, Zhou Y, Ren W, Fan S, Verkhozina VA (2009) Catalytic dechlorination of polychlorinated biphenyls in soil by palladium-iron bimetallic catalyst. J Hazard Mater 164(1):126–132

    Article  CAS  Google Scholar 

  • He F, Zhao D, Paul C (2010) Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 44(7):2360–2370

    Article  CAS  Google Scholar 

  • Hu WY, Huang B, Zhao YC, Sun WX, Gu ZQ (2014) Distribution, sources and potential risk of HCH and DDT in soils from a typical alluvial plain of the Yangtze River Delta region, China. Environ Geochem Health 36(3):345–358

    Article  CAS  Google Scholar 

  • Huang HJ, Liu SM, Kuo CE (2001) Anaerobic biodegradation of DDT residues (DDT, DDD, and DDE) in estuarine sediment. J Environ Sci Health B 36(3):273–288

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1823–1831

    Article  Google Scholar 

  • Katsenovich YP, Miralles-Wilhelm FR (2009) Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils. Sci Total Environ 407(18):4986–4993

    Article  CAS  Google Scholar 

  • Kim SC, Yang JE, Ok YS, Skousen J, Kim DG, Joo JH (2010) Accelerated metolachlor degradation in soil by zerovalent iron and compost amendments. Bull Environ Contam Toxicol 84(4):459–464

    Article  CAS  Google Scholar 

  • Li FB, Li XM, Zhou SG, Zhuang L, Cao F, Huang DY, Xu W, Liu TX, Feng CH (2010) Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environ Pollut 158(5):1733–1740

    Article  CAS  Google Scholar 

  • Liang L, Yang W, Guan X, Li J, Xu Z, Wu J, Huang Y, Zhang X (2013) Kinetics and mechanisms of pH-dependent Se (IV) removal by zero valent iron. Water Res 47(15):5846–5855

    Article  CAS  Google Scholar 

  • Lin C, Chang TC (2007) Photosensitized reduction of DDT using visible light: the intermediates and pathways of dechlorination. Chemosphere 66(6):1003–1011

    Article  CAS  Google Scholar 

  • Liu HF, Qian TW, Zhao DY (2013) Reductive immobilization of perrhenate in soil and groundwater using starch-stabilized ZVI nanoparticles. Chin Sci Bull 58(2):275–281

    Article  CAS  Google Scholar 

  • Long YY, Zhang C, Du Y, Tao XQ, Shen DS (2014) Enhanced reductive dechlorination of polychlorinated biphenyl-contaminated soil by in-vessel anaerobic composting with zero-valent iron. Environ Sci Pollut Res 21(6):4783–4792

    Article  CAS  Google Scholar 

  • Lundin L, Molto J, Fullana A (2013) Low temperature thermal degradation of PCDD/Fs in soil using nanosized particles of zerovalent iron and CaO. Chemosphere 91(6):740–744

    Article  CAS  Google Scholar 

  • Noubactep C (2008) A critical review on the process of contaminant removal in Fe0-H20 systems. Environ Technol 29(8):909–920

    Article  CAS  Google Scholar 

  • Olson MR, Blotevogel J, Borch T, Petersen MA, Royer RA, Sale TC (2014) Long-term potential of in situ chemical reduction for treatment of polychlorinated biphenyls in soils. Chemosphere 114:144–149

    Article  CAS  Google Scholar 

  • Satapanajaru T, Anurakpongsatorn P, Songsasen A, Boparai H, Park J (2006) Using low-cost iron byproducts from automotive manufacturing to remediate DDT. Water Air Soil Pollut 175(1–4):361–374

    Article  CAS  Google Scholar 

  • Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, Boparai H (2008) Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water Air Soil Pollut 192(1–4):349–359

    Article  CAS  Google Scholar 

  • Sayles GD, You G, Wang M, Kupferle M (1997) DDT, DDD, and DDE dechlorination by zero-valent iron. Environ Sci Technol 31(12):3448–3454

    Article  CAS  Google Scholar 

  • Sheng GD, Shao XY, Li YM, Li JF, Dong HP, Cheng W, Gao X, Huang YY (2014) Enhanced removal of uranium (VI) by nanoscale zerovalent iron supported on na-bentonite and an investigation of mechanism. J Phys Chem A 118(16):2952–2958

    Article  CAS  Google Scholar 

  • Sheu YT, Chen SC, Chien CC, Chen CC, Kao CM (2015) Application of a long-lasting colloidal substrate with pH and hydrogen sulfide control capabilities to remediate TCE-contaminated groundwater. J Hazard Mater 284:222–232

    Article  CAS  Google Scholar 

  • Singh R, Manickam N, Mudiam MKR, Murthy RC, Misra V (2013) An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. J Hazard Mater 258–259:35–41

    Article  Google Scholar 

  • Sriprom P, Neramittagapong S, Lin C, Wantala K, Neramittagapong A, Grisdanurak N (2015) Optimizing chemical oxygen demand removal from synthesized wastewater containing lignin by catalytic wet-air oxidation over CuO/Al2O3 catalysts. J Air Waste Manag Assoc 65(7):828–836

    Article  CAS  Google Scholar 

  • Tang ML, Zhao MR, Zhou SS, Chen K, Zhang CL, Liu WP (2014) Assessing the underlying breast cancer risk of Chinese females contributed by dietary intake of residual DDT from agricultural soils. Environ Int 73:208–215

    Article  CAS  Google Scholar 

  • USEPA (2009) US Environmental Protection Agency, Washington, DC, USA. About pesticides. Available at www.epa.gov/pesticides/about/index.htm

  • Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 66(6):1031–1038

    Article  CAS  Google Scholar 

  • Wang ZY, Huang WL, Peng PA, Fennell DE (2010) Rapid transformation of 1,2,3,4-TCDD by Pd/Fe catalysts. Chemosphere 78(2):147–151

    Article  CAS  Google Scholar 

  • Wu YX, Wu ZH, Huang XF, Simonnot MO, Zhang T, Qiu RL (2015) Synergistical enhancement by Ni2+ and Tween-80 of nanoscale zerovalent iron dechlorination of 2,2′,5,5′-tetrachlorinated biphenyl in aqueous solution. Environ Sci Pollut Res 22(1):555–564

    Article  CAS  Google Scholar 

  • Yang SC, Lei M, Chen TB, Li XY, Liang Q, Ma C (2010) Application of zerovalent iron (Fe-0) to enhance degradation of HCHs and DDX in soil from a former organochlorine pesticides manufacturing plant. Chemosphere 79(7):727–732

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanoparticle Res 5(3–4):323–332

    Article  CAS  Google Scholar 

  • Zhang PF, Tao X, Li ZH, Bowman RS (2002) Enhanced perchloroethylene reduction in column systems using surfactant-modified zeolite/zero-valent iron pellets. Environ Sci Technol 36(16):3597–3603

    Article  CAS  Google Scholar 

  • Zhang M, He F, Zhao D, Hao X (2011) Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Res 45(7):2401–2414

    Article  CAS  Google Scholar 

  • Zhang Z, Hu S, Baig SA, Tang J, Xu XH (2012) Catalytic dechlorination of Aroclor 1242 by Ni/Fe bimetallic nanoparticles. J Colloid Interface Sci 385:160–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology R&D Program of China (No. 2012AA06A204), the Zhejiang Provincial Natural Science Foundation (No. LZ13D010001), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120101110073), and the National Nature Science Foundation of China (No. 21477112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Fang or Yunlong Yu.

Additional information

Responsible editor: Santiago V. Luis

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 17 kb)

Table S2

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Shi, N., Wang, H. et al. Nanoscale zerovalent iron-mediated degradation of DDT in soil. Environ Sci Pollut Res 23, 6253–6263 (2016). https://doi.org/10.1007/s11356-015-5850-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5850-3

Keywords

Navigation