Skip to main content
Log in

Resonance Raman imaging as a tool to assess the atmospheric pollution level: carotenoids in Lecanoraceae lichens as bioindicators

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript


Raman spectroscopy differentiation of carotenoids has traditionally been based on the ν 1 position (C = C stretching vibrations in the polyene chain) in the 1500–1600 cm−1 range, using a 785 nm excitation laser. However, when the number of conjugated double bonds is similar, as in the cases of zeaxanthin and β-carotene, this distinction is still ambiguous due to the closeness of the Raman bands. This work shows the Raman results, obtained in resonance conditions using a 514 mm laser, on Lecanora campestris and Lecanora atra species, which can be used to differentiate and consequently characterize carotenoids. The presence of the carotenoid found in Lecanoraceae lichens has been demonstrated to depend on the atmospheric pollution level of the environment they inhabit. Astaxanthin, a superb antioxidant, appears as the principal xanthophyll in highly polluted sites, usually together with the UV screening pigment scytonemin; zeaxanthin is the major carotenoid in medium polluted environments, while β-carotene is the major carotenoid in cleaner environments. Based on these observations, an indirect classification of the stress suffered in a given environment can be assessed by simply analysing the carotenoid content in the Lecanoraceae lichens by using resonance Raman imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  • Bennett M, Chistie SM, Graham A, Thomas BS, Vishnyakov V, Morris K, Peters DM, Jones R, Ansell C (2011) Composition of smoke generated by landing aircraft. Environ Sci Technol 45:3533–3538

    Article  CAS  Google Scholar 

  • de Gelder J, de Gussem K, Vandenabeele P, Moens L (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38:1133–1147

    Article  Google Scholar 

  • de Oliveira VE, Castro HV, Edwards HGM, de Oliveira LFC (2010) Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis. J Raman Spectrosc 41:642–650

    Article  Google Scholar 

  • Dickensheets DL, Wynn-Williams DD, Edwards HGM, Schoen C, Crowder C, Newton EM (2000) A novel miniature confocal microscope/Raman spectrometer system for biomolecular analysis on future Mars missions after Antarctic trials. J Raman Spectrosc 31:633–635

    Article  CAS  Google Scholar 

  • Edwards HGM (2007) A novel extremophile strategy studied by Raman spectroscopy. Spectrochim Acta A 68:1126–1132

    Article  Google Scholar 

  • Edwards HGM, Perez FR (2004) Application of Fourier transform Raman spectroscopy to the characterization of parchment and vellum II-Effect of biodeterioration and chemical deterioration on spectral interpretation. J Raman Spectrosc 35:754–760

    Article  CAS  Google Scholar 

  • Edwards HGM, Russell NC, Seaward MRD (1995) Lichen biodeterioration under different microclimates: an FT Raman spectroscopic study. Spectrochim Acta A 51:2091–2100

    Article  Google Scholar 

  • Edwards HGM, Holder JM, Seaward MRD, Robinson DA (2002) Raman spectroscopic study of lichen-assisted weathering of sandstone outcrops in the High Atlas Mountains, Morocco. J Raman Spectrosc 33:449–454

    Article  CAS  Google Scholar 

  • Edwards HGM, Newton EM, Dickensheets DL, Wynn-Williams DD (2003) Raman spectroscopic detection of biomolecular markers from Antarctic materials: evaluation for putative Martian habitats. Spectrochim Acta A 59:2277–2290

    Article  Google Scholar 

  • Edwards HGM, Cockell CS, Newton EM, Wynn-Williams DD (2004a) Protective pigmentation in UVB-screened Antarctic lichens studied by Fourier transform Raman spectroscopy: an extremophile bioresponse to radiation stress. J Raman Spectrosc 35:463–469

    Article  CAS  Google Scholar 

  • Edwards HGM, Wynn-Williams DD, Little SJ, de Oliveira LFC, Cockell CS, Ellis-Evans JC (2004b) Stratified response to environmental stress in a polar lichen characterized with FT-Raman microscopic analysis. Spectrochim Acta A 60:2029–2033

    Article  CAS  Google Scholar 

  • Edwards HGM, Jorge Villar SE, Pullan D, Hargreaves MD, Hofmann BA, Westall F (2007a) Morphological biosignatures from relict fossilised sedimentary geological specimens: a Raman spectroscopic study. J Raman Spectrosc 38:1352–1361

    Article  CAS  Google Scholar 

  • Edwards HGM, Vandenabeele P, Jorge Villar SE, Carter EA, Perez FR, Hargreaves MD (2007b) The Rio Tinto Mars analogue site: an extremophilic Raman spectroscopic study. Spectrochim Acta A 68:1133–1137

    Article  Google Scholar 

  • Ellery A, Wynn-Williams D, Parnell J, Edwards HGM, Dickensheets D (2004) The role of Raman spectroscopy as an astrobiological tool in the exploration of Mars. J Raman Spectrosc 35:441–457

    Article  CAS  Google Scholar 

  • Hjortenkrans D, Bergbäck B, Häggerud A (2006) New metal emission patterns in road traffic environments. Environ Monit Assess 117:85–98

    Article  CAS  Google Scholar 

  • Jorge Villar SE, Edwards HGM (2006) Raman spectroscopy in astrobiology. Anal Bioanal Chem 384:100–113

    Article  CAS  Google Scholar 

  • Jorge Villar SE, Edwards HGM (2010) Lichen colonization of an active volcanic environment: a Raman spectroscopic study of extremophile biomolecular protective strategies. J Raman Spectrosc 41:63–67

    Article  CAS  Google Scholar 

  • Kudelski A (2008) Analytical applications of Raman spectroscopy. Talanta 76:1–8

    Article  CAS  Google Scholar 

  • Larsen RS, Bell JNB, James PW (2007) Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity. Environ Pollut 146:332–340

    Article  CAS  Google Scholar 

  • Maguregui M, Knuutinen U, Trebolazabala J, Morillas H, Castro K, Martínez-Arkarazo I, Madariaga JM (2012) Use of in situ and confocal Raman spectroscopy to study the nature and distribution of carotenoids in brown patinas from a deteriorated wall painting in Marcus Lucretius House (Pompeii). Anal Bioanal Chem 402:1529–1539

    Article  CAS  Google Scholar 

  • Malaspina P, Tixi S, Brunialti G, Frati L, Paoli L, Giordani P, Modenesi P, Loppi S (2014) Biomonitoring urban air pollution using transplanted lichens: element concentrations across seasons. Environ Sci Pollut Res 22:12836–12842

    Article  Google Scholar 

  • Martínez-Arkarazo I, Angulo M, Usobiaga A, Fernández L A, Madariaga JM (2006) Protection of carbonaceous materials by formation of a superficial oxalate layer, in Heritage Protection: construction aspects (J. Radic, V. Rajcic and R. Zarnic eds.), pp.174-179

  • Martínez-Arkarazo I, Smith DC, Zuloaga O, Olazabal MA, Madariaga JM (2008) Evaluation of three different mobile Raman microscopes employed in the study of deteriorated civil building stones. J Raman Spectrosc 39:1018–1029

    Article  Google Scholar 

  • Merlin JC (1985) Resonance Raman spectroscopy of carotenoids and carotenoid containing systems. Pure Appl Chem 57:785–792

    Article  CAS  Google Scholar 

  • Morillas H, Maguregui M, Marcaida I, Trebolazabala J, Salcedo I, Madariaga JM (2015) Characterization of the main colonizer and biogenic pigments present in the red biofilm from La Galea Fortress sandstone by means of microscopic observations and Raman imaging. Microchem J 121:48–55

    Article  CAS  Google Scholar 

  • Mrak T, Slejkovec Z, Jeran Z (2006) Extraction of arsenic compounds from lichens. Talanta 69:251–258

    Article  CAS  Google Scholar 

  • Pérez-Alonso M, Castro K, Martínez-Arkarazo I, Angulo M, Olazabal MA, Madariaga JM (2004) Analysis of bulk and degradation inorganic products of stones, mortars and wallpaintings by portable Raman microprobe. Anal Bioanal Chem 379:42–50

    Article  Google Scholar 

  • Prinsloo LC, Barnard W, Meiklejohn I, Hall K (2008) The first Raman spectroscopic study of San rock art in the Ukhahlamba Drakensberg Park, South Africa. J Raman Spectrosc 39:646–654

    Article  CAS  Google Scholar 

  • Sarmiento A, Maguregui M, Martínez-Arkarazo I, Angulo M, Castro K, Olazábal MA, Fernández LA, Rodríguez-Laso MD, Mujika AM, Gómez J, Madariaga JM (2008) Raman spectroscopy as a tool to diagnose the impacts of combustion and greenhouse acid gases on properties of Built Heritage. J Raman Spectrosc 39:1042–1049

    Article  CAS  Google Scholar 

  • Saxena S, Upreti DK, Sharma N (2007) Heavy metal accumulation in lichens growing in north side of Lucknow city, India. J Environ Biol 28:49–51

    CAS  Google Scholar 

  • Schrader B, Schulz H, Andreev GN, Klump HH, Sawatzki J (2000) Non-destructive NIR-FT-Raman spectroscopy of plant and animal tissues, of food and works of art. Talanta 53:35–45

    Article  CAS  Google Scholar 

  • Schulz H, Baranska M, Baranski R (2005) Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 77:212–221

    Article  CAS  Google Scholar 

  • Vítek P, Jehlička J, Edwards HGM, Osterrothová K (2009) Identification of β-carotene in an evaporitic matrixevaluation of Raman spectroscopic analysis for astrobiological research on Mars. Anal Bioanal Chem 393:1967–1975

    Article  Google Scholar 

  • Widjaja E, Garland M (2010) Detection of bio-constituents in complex biological tissue using Raman microscopy. Application to human nail clippings. Talanta 80:1665–1671

    Article  CAS  Google Scholar 

  • Withnall R, Chowdhry BZ, Siver J, Edwards HGM, de Oliveira LFC (2003) Raman spectra of carotenoids in natural products. Spectrochim Acta A 59:2207–2212

Download references


This work is supported by the DISILICA-1930 project (ref. BIA2014-59124-P) funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (FEDER). Technical support provided by the Raman-LASPEA laboratory of the SGIker (UPV/EHU, MICINN, GV/EJ, ERDF and ESF) is gratefully acknowledged. I. Ibarrondo is grateful to the University of the Basque Country (UPV/EHU) for her pre-doctoral fellowship. N. Prieto-Taboada acknowledges her grant from the Spanish MICINN and she is grateful to the University of the Basque Country (UPV/EHU) for their post-doctoral contract.

Author information

Authors and Affiliations


Corresponding author

Correspondence to I. Ibarrondo.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

a) L. campestris lichen on limestone and b), c) SEM details of the colony. (GIF 1911 kb)

High Resolution Image (TIF 1554 kb)

Figure S2

a) Lecanora Muralis lichen in the emplacement; b) the same lichen in greater detail c) SEM image of the colony showing the apothecium and the thallus. (GIF 1758 kb)

High Resolution Image (TIF 1771 kb)

Table S1

(DOC 28 kb)

Figure S3

Raman signatures collected on orange areas of the lichen thallus. (a) spectrum related to the photoprotective pigment parietin and (b) signatures of the same pigment together with the main Raman bands of lycopene. (JPEG 96.8 kb)

High Resolution Image (TIF 86.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibarrondo, I., Prieto-Taboada, N., Martínez-Arkarazo, I. et al. Resonance Raman imaging as a tool to assess the atmospheric pollution level: carotenoids in Lecanoraceae lichens as bioindicators. Environ Sci Pollut Res 23, 6390–6399 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: