Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture

Abstract

Hydroponic experiment was conducted to appraise variation in the salt tolerance potential of two wheat cultivars (salt tolerant, S-24, and moderately salt sensitive, MH-97) at different growth stages. These two wheat cultivars are not genetically related as evident from randomized polymorphic DNA analysis (random amplified polymorphic DNA (RAPD)) which revealed 28 % genetic diversity. Salinity stress caused a marked reduction in grain yield of both wheat cultivars. However, cv. S-24 was superior to cv. MH-97 in maintaining grain yield under saline stress. Furthermore, salinity caused a significant variation in different physiological attributes measured at different growth stages. Salt stress caused considerable reduction in different water relation attributes of wheat plants. A significant reduction in leaf water, osmotic, and turgor potentials was recorded in both wheat cultivars at different growth stages. Maximal reduction in leaf water potential was recorded at the reproductive stage in both wheat cultivars. In contrast, maximal turgor potential was observed at the boot stage. Salt-induced adverse effects of salinity on different water relation attributes were more prominent in cv. MH-97 as compared to those in cv. S-24. Salt stress caused a substantial decrease in glycine betaine and alpha tocopherols. These biochemical attributes exhibited significant salt-induced variation at different growth stages in both wheat cultivars. For example, maximal accumulation of glycine betaine was evident at the early growth stages (vegetative and boot). However, cv. S-24 showed higher accumulation of this organic osmolyte, and this could be the reason for maintenance of higher turgor than that of cv. MH-97 under stress conditions. Salt stress significantly increased the endogenous levels of toxic ions (Na+ and Cl) and decreased essential cations (K+ and Ca2+) in both wheat cultivars at different growth stages. Furthermore, K+/Na+ and Ca2+/Na+ ratios decreased markedly due to salt stress in both wheat cultivars at different growth stages, and this salt-induced reduction was more prominent in cv. MH-97. Moreover, higher K+/Na+ and Ca2+/Na+ ratios were recorded at early growth stages in both wheat cultivars. It can be inferred from the results that wheat plants are more prone to adverse effects of salinity stress at early growth stages than that at the reproductive stage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abdelmalek C, Khaled T (2011) Physiological behavior of wheat genotypes from Algerian semi-arid regions grown under salt stress. Afr J Agric Res 5:636–641. doi:10.5897/AJAR10.494

    Google Scholar 

  2. Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    CAS  Article  Google Scholar 

  3. Alarcon JJ, Sanchez-Blanco MJ, Bolarin MC, Torrecillas A (1993) Water relations and osmotic adjustment in Lycopersicon esculentum and L. pennellii during short-term salt exposure and recovery. Physiol Plant 89:441–447. doi:10.1111/j.1399-3054.1993.tb05196.x

    CAS  Article  Google Scholar 

  4. Ali Q, Athar H-R, Ashraf M (2008) Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regul 56:107–116. doi:10.1007/s10725-008-9290-7

    CAS  Article  Google Scholar 

  5. Ali Y, Aslam Z, Ashraf MY, Tahir GR (2013) Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. Int J Environ Sci Technol 1:221–225. doi:10.1007/BF03325836

    Article  Google Scholar 

  6. Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164:685–694. doi:10.1016/j.jplph.2006.05.010

    CAS  Article  Google Scholar 

  7. Arrom L, Munné-Bosch S (2010) Tocopherol composition in flower organs of Lilium and its variations during natural and artificial senescence. Plant Sci 179:289–295. doi:10.1016/j.plantsci.2010.05.002

    CAS  Article  Google Scholar 

  8. Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 376:361–376

    Article  Google Scholar 

  9. Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93. doi:10.1016/j.biotechadv.2008.09.003

    CAS  Article  Google Scholar 

  10. Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752. doi:10.1016/j.biotechadv.2009.05.026

    CAS  Article  Google Scholar 

  11. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. doi:10.1016/j.envexpbot.2005.12.006

    CAS  Article  Google Scholar 

  12. Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16. doi:10.1016/j.plantsci.2003.10.024

    CAS  Article  Google Scholar 

  13. Ashraf M, O’leary JW (1996) Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress: 1. Yield components and ion distribution. J Agron Crop Sci 176:91–101. doi:10.1111/j.1439-037X.1996.tb00451.x

    Article  Google Scholar 

  14. Ashraf M, Shahbaz M (2003) Assessment of genotypic variation in salt tolerance of early CIMMYT hexaploid wheat germplasm using photosynthetic capacity and water relations as selection criteria. Photosynthetica 41:273–280. doi:10.1023/B:PHOT.0000011961.33120.b6

    Article  Google Scholar 

  15. Ashraf M, Shahbaz M, McNeilly T (2005) Phylogenetic relationship of salt tolerance in early green revolution CIMMYT wheats. Environ Exp Bot 53:173–184. doi:10.1016/j.envexpbot.2004.03.012

    CAS  Article  Google Scholar 

  16. Ashraf MA, Ashraf M, Ali Q (2010) Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pak J Bot 42:559–565

    CAS  Google Scholar 

  17. Ashraf MA, Ahmad MSA, Ashraf M et al (2011) Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop Pasture Sci 62:25. doi:10.1071/CP09225

    CAS  Article  Google Scholar 

  18. Ashraf MA, Ashraf M, Shahbaz M (2012) Growth stage-based modulation in antioxidant defense system and proline accumulation in two hexaploid wheat (Triticum aestivum L.) cultivars differing in salinity tolerance. Flora Morphol Distrib Funct Ecol Plant 207:388–397. doi:10.1016/j.flora.2012.03.004

    Article  Google Scholar 

  19. Ashraf MA, Rasool M, Ali Q et al (2013) Salt-induced perturbation in growth, physiological attributes, activities of antioxidant enzymes and organic solutes in mungbean (Vigna radiata L.) cultivars differing in salinity tolerance. Arch Agron Soil Sci 59:1695–1712. doi:10.1080/03650340.2012.758840

    CAS  Article  Google Scholar 

  20. Ashraf M, Iqbal M, Hussain I, Rasheed R (2015) Physiological and biochemical approaches for salinity tolerance. In: Managing salt tolerance in plants: molecular and genomic perspectives, 79

  21. Asif M (2005) DNA fingerprinting studies of some wheat (Triticum aestivum L.) genotypes using random amplified polymorphic DNA (RAPD) analysis. Pak J Bot 37(2):271–277

    Google Scholar 

  22. Athar H-R, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot 63:224–231. doi:10.1016/j.envexpbot.2007.10.018

    CAS  Article  Google Scholar 

  23. Bai Y, Michaels TE, Pauls KP (1998) Determination of genetic relationships among shape Phaseolus vulgaris populations in a conical cross from RAPD marker analyses. Mol Breed 4:395–406. doi:10.1023/A:1009601910980

    CAS  Article  Google Scholar 

  24. Baker H, Frank O, DeAngelis B, Feingold S (1980) Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutr Rep Int 21(4):531–536

    CAS  Google Scholar 

  25. Brummer EC, Bouton JH, Kochert G (1995) Analysis of annual Medicago species using RAPD markers. Genome 38:362–367. doi:10.1139/g95-047

    CAS  Article  Google Scholar 

  26. Cao W, Scoles G, Hucl P, Chibbar RN (1999) The use of RAPD analysis to classify Triticum accessions. TAG Theor Appl Genet 98:602–607. doi:10.1007/s001220051110

    CAS  Article  Google Scholar 

  27. Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683. doi:10.1104/pp. 011445

    CAS  Article  Google Scholar 

  28. Cha-Um S, Nhung NTH, Chalermpol K (2010) Effect of mannitol- and salt-induced iso-osmotic stress on proline accumulation, photosynthetic abilities and growth characters of rice cultivars (Oryza sativa L. spp. Indica). Pak J Bot 42:927–941. doi:10.1007/s11703-009-0063-5

    CAS  Google Scholar 

  29. Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20. doi:10.1111/j.1365-3040.2010.02232.x

    Article  CAS  Google Scholar 

  30. Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437. doi:10.2135/cropsci2005.0437

    CAS  Article  Google Scholar 

  31. Colmer TD, Epstein E, Dvorak J (1995) Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat x Lophopyrum elongatum (Host) A. Love Amphiploid. Plant Physiol 108:1715–1724. doi:10.1104/pp. 108.4.1715

    CAS  Google Scholar 

  32. Cramer GR (1992) Kinetics of maize leaf elongation. J Exp Bot 43:857–864. doi:10.1093/jxb/43.6.857

    Article  Google Scholar 

  33. de Azevedo Neto AD, Prisco JT, Enéas-Filho J et al (2004) Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz J Plant Physiol 16:31–38. doi:10.1590/S1677-04202004000100005

    Article  Google Scholar 

  34. De Pascale S, Maggio A, Barbieri G (2005) Soil salinization affects growth, yield and mineral composition of cauliflower and broccoli. Eur J Agron 23:254–264. doi:10.1016/j.eja.2004.11.007

    Article  CAS  Google Scholar 

  35. Di Martino C, Delfine S, Pizzuto R et al (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 158:455–463. doi:10.1046/j.1469-8137.2003.00770.x

    Article  CAS  Google Scholar 

  36. Dongre A, Parkhi V (2012) Identification of cotton hybrid through the combination of PCR based RAPD, ISSR and microsatellite markers. J Plant Biochem Biotechnol 14:53–55. doi:10.1007/BF03263226

    Article  Google Scholar 

  37. Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  38. Dvořák J, Gorham J (1992) Methodology of gene transfer by homoeologous recombination into Triticum turgidum: transfer of K+/Na + discrimination from Triticum aestivum. Genome 35:639–646. doi:10.1139/g92-096

    Article  Google Scholar 

  39. El-Hendawy SE, Hu Y, Schmidhalter U (2005) Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerances. Aust J Agric Res 56:123. doi:10.1071/AR04019

    CAS  Article  Google Scholar 

  40. Evlagon D, Ravina I, Neumann P (1990) Interactive effects of salinity and calcium on hydraulic conductivity, osmotic adjustment, and growth in primary roots of maize seedlings. Isr J Bot 39(3):239–247

    CAS  Google Scholar 

  41. Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121. doi:10.1146/annurev.pp. 28.060177.000513

    CAS  Article  Google Scholar 

  42. Fu Y-B, Peterson G, Diederichsen A, Richards KW (2002) RAPD analysis of genetic relationships of seven flax species in the genus Linum L. Genet Resour Crop Evol 49:253–259. doi:10.1023/A:1015571700673

    Article  Google Scholar 

  43. Gadallah MAA (1999) Effects of proline and glycinebetaine on Vicia Faba responses to salt stress. Biol Plant 42:249–257. doi:10.1023/A:1002164719609

    CAS  Article  Google Scholar 

  44. Glenn E, Brown J (1998) Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil. Am J Bot 85:10

    CAS  Article  Google Scholar 

  45. Gorham J, Bridges J, Dubcovsky J et al (1997) Genetic analysis and physiology of a trait for enhanced K+/Na+ discrimination in wheat. New Phytol 137:109–116. doi:10.1046/j.1469-8137.1997.00825.x

    CAS  Article  Google Scholar 

  46. Government of Pakistan (2005) Crops area production (by districts). Ministry of Food, Agriculture and Livestock, Islamabad

    Google Scholar 

  47. Grattan SR, Grieve CM (1999) Salinity–mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    CAS  Article  Google Scholar 

  48. Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307. doi:10.1007/BF02374789

    CAS  Article  Google Scholar 

  49. Grieve CM, Lesch SM, Francois LE, Maas EV (1992) Analysis of main-spike yield components in salt-stressed wheat. Crop Sci 32:697–703. doi:10.2135/cropsci1992.0011183X003200030025x

    CAS  Article  Google Scholar 

  50. Gucci R, Aronne G, Lombardini L, Tattini M (1997) Salinity tolerance in Phillyrea species. New Phytol 135:227–234. doi:10.1046/j.1469-8137.1997.00644.x

    CAS  Article  Google Scholar 

  51. Gulzar S, Khan MA, Ungar IA (2003) Salt tolerance of a coastal salt marsh grass. Commun Soil Sci Plant Anal 34:2595–2605. doi:10.1081/CSS-120024787

    CAS  Article  Google Scholar 

  52. Gzik A (1996) Accumulation of proline and pattern of α-amino acids in sugar beet plants in response to osmotic, water and salt stress. Environ Exp Bot 36:29–38. doi:10.1016/0098-8472(95)00046-1

    CAS  Article  Google Scholar 

  53. Hasegawa M, Bressan R, Pardo JM (2000) The dawn of plant salt tolerance genetics. Trends Plant Sci 5:317–319

    CAS  Article  Google Scholar 

  54. Heidari M, Jamshidi P (2011) Effects of salinity and potassium application on antioxidant enzyme activities and physiological parameters in pearl millet. Agric Sci China 10:228–237. doi:10.1016/S1671-2927(09)60309-6

    CAS  Article  Google Scholar 

  55. Heuer B, Plaut Z (1989) Photosynthesis and osmotic adjustment of two sugarbeet cultivars grown under saline conditions 1. J Exp Bot 40:437–440. doi:10.1093/jxb/40.4.437

    Article  Google Scholar 

  56. Iqbal M, Hussain I, Liaqat H et al (2015) Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol Biochem 94:95–103. doi:10.1016/j.plaphy.2015.05.012

    CAS  Article  Google Scholar 

  57. Kaymakanova M, Stoeva N (2008) Physiological reaction of bean plants (Phaseolus vulgaris L.) to salt stress. Gen Appl Plant Physiol 34:177–188

    CAS  Google Scholar 

  58. Keutgen AJ, Pawelzik E (2008) Quality and nutritional value of strawberry fruit under long term salt stress. Food Chem 107:1413–1420. doi:10.1016/j.foodchem.2007.09.071

    CAS  Article  Google Scholar 

  59. Khan A, Ahmad MSA, Athar R, Ashraf M (2006) Interactive effect of foliarly applied ascorbic acid and salt stress on wheat (Triticum aestivum L.) at the seedling stage. Pak J Bot 38:1407–1414

    Google Scholar 

  60. Kurban H, Saneoka H, Nehira K et al (1999) Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.). Soil Sci Plant Nutr 45:851–862. doi:10.1080/00380768.1999.10414334

    CAS  Article  Google Scholar 

  61. Läuchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Advances in molecular breeding toward drought and salt tolerant crops. Springer Netherlands 1–32

  62. Lloyd J, Kriedemann P, Syvertsen J (1987) Gas exchange, water relations and ion concentrations of leaves of salt stressed “Valencia” orange, Citrus sinensis (L.) Osbeck. Aust J Plant Physiol 14:387. doi:10.1071/PP9870387

    Article  Google Scholar 

  63. Lynch J, Läuchli A (1985) Salt stress disturbs the calcium nutrition of barley (Hordeum vulgare L.). New Phytol 99(3):345–354

    CAS  Article  Google Scholar 

  64. Maas EV, Grattan SR (1999) Crop yields as affected by salinity. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 55–108

    Google Scholar 

  65. Maas EV, Poss JA (1989) Salt sensitivity of wheat at various growth stages. Irrig Sci 10(1):29–40. doi:10.1007/BF00266155

    Article  Google Scholar 

  66. Maas EV, Poss JA, Hoffman GJ (1986) Salinity sensitivity of sorghum at three growth stages. Irrig Sci 7(1):1–11. doi:10.1007/BF00255690

    Article  Google Scholar 

  67. Madan S, Nainawatee HS, Jain RK, Chowdhury JB (1995) Proline and proline metabolising enzymes in in-vitro selected NaCl-tolerant Brassica juncea L. under salt stress. Ann Bot 76:51–57. doi:10.1006/anbo.1995.1077

    CAS  Article  Google Scholar 

  68. Mandhania S, Madan S, Sheokand S (2010) Differential response in salt tolerant and sensitive genotypes of wheat in terms of ascorbate, carotenoids proline and plant water relations. Asian J Exp Sci 1:4–792

    Google Scholar 

  69. Mansour MMF, Salama KHA, Ali FZM, Hadid AFA (2005) Cell and plant responses to NaCl in Zea mays L. cultivars differing in salt tolerance. Gen Appl Plant Physiol 31:29–41

    CAS  Google Scholar 

  70. Marcum KB (2006) Use of saline and non-potable water in the turfgrass industry: constraints and developments. Agric Water Manag 80:132–146. doi:10.1016/j.agwat.2005.07.009

    Article  Google Scholar 

  71. Millar AA, Duysen ME, Wilkinson GE (1968) Internal water balance of barley under soil moisture stress. Plant Physiol 43:968–972. doi:10.1104/pp. 43.6.968

    CAS  Article  Google Scholar 

  72. Munné-Bosch S (2005) The role of α-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748. doi:10.1016/j.jplph.2005.04.022

    Article  CAS  Google Scholar 

  73. Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Cr Rev Plant Sci 21(1):31–57

    Article  Google Scholar 

  74. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. doi:10.1111/j.1469-8137.2005.01487.x

    CAS  Article  Google Scholar 

  75. Munns R (2009) Strategies for crop improvement in saline soils. In: salinity and water stress. Springer Netherlands 99–110

  76. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911

    CAS  Article  Google Scholar 

  77. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043. doi:10.1093/jxb/erj100

    CAS  Article  Google Scholar 

  78. Murata N, Mohanty PS, Hayashi H, Papageorgiou GC (1992) Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex. FEBS Lett 296:187–189. doi:10.1016/0014-5793(92)80376-R

    CAS  Article  Google Scholar 

  79. Nawaz K, Ashraf M (2007) Improvement in salt tolerance of maize by exogenous application of glycinebetaine: growth and water relations. Pak J Bot 39:1647–1653

    Google Scholar 

  80. Nawaz K, Hussain K, Majeed A et al (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 9:5475–5480

    CAS  Google Scholar 

  81. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. doi:10.1016/j.ecoenv.2004.06.010

    CAS  Article  Google Scholar 

  82. Patterson JH, Newbigin E, Tester M et al (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103. doi:10.1093/jxb/erp243

    Article  CAS  Google Scholar 

  83. Pérez-López U, Robredo A, Lacuesta M et al (2009) The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol Plant 135:29–42. doi:10.1111/j.1399-3054.2008.01174.x

    Article  CAS  Google Scholar 

  84. Poustini K, Siosemardeh A (2004) Ion distribution in wheat cultivars in response to salinity stress. Field Crop Res 85:125–133. doi:10.1016/S0378-4290(03)00157-6

    Article  Google Scholar 

  85. Rasheed R, Ashraf MA, Parveen S et al (2014) Effect of salt stress on different growth and biochemical attributes in two canola (Brassica napus L.) cultivars. Commun Soil Sci Plant Anal 45:669–679. doi:10.1080/00103624.2013.867045

    CAS  Article  Google Scholar 

  86. Raza SH, Athar HUR, Ashraf M (2006) Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. Pak J Bot 38(2):341–351

    Google Scholar 

  87. Rehman R, Shah K, Masood M (2013) Genetic divergence among Pakistani bread wheat varieties and advanced line for randomly amplified polymorphic DNA (RAPD) markers. Pak J Bot 45(S1):327–332

    CAS  Google Scholar 

  88. Rengel Z (1992) The role of calcium in salt toxicity. Plant Cell Environ 15:625–632. doi:10.1111/j.1365-3040.1992.tb01004.x

    CAS  Article  Google Scholar 

  89. Robinson SP, Downton WJS, Millhouse JA (1983) Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. Plant Physiol 73:238–242. doi:10.1104/pp. 73.2.238

    CAS  Article  Google Scholar 

  90. Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160:265–272. doi:10.1016/S0168-9452(00)00388-5

    CAS  Article  Google Scholar 

  91. Sairam RK, Rao KV, Srivastava G (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046. doi:10.1016/S0168-9452(02)00278-9

    CAS  Article  Google Scholar 

  92. Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91. doi:10.1007/s10535-005-5091-2

    CAS  Article  Google Scholar 

  93. Sanchez-Blanco MJ, Bolarin MC, Alarcon JJ, Torrecillas A (1991) Salinity effects on water relations in Lycopersicon esculentum and its wild salt-tolerant relative species L. pennellii. Physiol Plant 83:269–274. doi:10.1111/j.1399-3054.1991.tb02152.x

    Article  Google Scholar 

  94. Shafi M, Bakht J, Khan MJ et al (2010) Effect of salinity on yield and ion accumulation. Pak J Bot 42:4113–4121

    Google Scholar 

  95. Siddiqi EH, Ashraf M (2008) Can leaf water relation parameters be used as selection criteria for salt tolerance in safflower (Carthamus tinctorius L.). Pak J Bot 40:221–228

    Google Scholar 

  96. Singh P, Singh N, Sharma KD, Kuhad MS (2010) Plant water relations and osmotic adjustment in Brassica species under salinity stress. J Am Sci 6:1–4

    Google Scholar 

  97. Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. Iowa State University Press, Ames

    Google Scholar 

  98. Stone PJ, Savin R, Satorre EH, Slafer GA (1999) Grain quality and its physiological determinants. In: Wheat: ecology and physiology of yield determination 85–120

  99. Sun G, Bond M, Nass H et al (2003) RAPD polymorphisms in spring wheat cultivars and lines with different level of Fusarium resistance. Theor Appl Genet 106:1059–1067. doi:10.1007/s00122-002-1163-2

    CAS  Google Scholar 

  100. Tavakkoli E, Fatehi F, Coventry S et al (2011) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62:2189–2203. doi:10.1093/jxb/erq422

    CAS  Article  Google Scholar 

  101. Thiel G, Lynch J, Läuchli A (1988) Short-term effects of salinity stress on the turgor and elongation of growing barley leaves. J Plant Physiol 132:38–44. doi:10.1016/S0176-1617(88)80180-9

    CAS  Article  Google Scholar 

  102. Tuna AL, Kaya C, Ashraf M et al (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59:173–178. doi:10.1016/j.envexpbot.2005.12.007

    CAS  Article  Google Scholar 

  103. Wang Y-M, Meng Y-L, Nii N (2004) Changes in glycine betaine and related enzyme contents in Amaranthus tricolor under salt stress. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao J Plant Physiol Mol Biol 30:496–502

    CAS  Google Scholar 

  104. Win KT, Oo AZ, Hirasawa T et al (2011) Genetic analysis of Myanmar Vigna species in responses to salt stress at the seedling stage. Afr J Biotechnol 10:1615–1624. doi:10.5897/AJB10.1298

    CAS  Google Scholar 

  105. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620. doi:10.1016/j.tplants.2005.10.002

    CAS  Article  Google Scholar 

  106. Yang YW, Newton RJ, Miller FR (1990) Salinity tolerance in sorghum. I. Whole plant response to sodium chloride in S. bicolor and S. halepense. Crop Sci 30:775. doi:10.2135/cropsci1990.0011183X003000040003x

    CAS  Article  Google Scholar 

  107. Zhang J-L, Flowers TJ, Wang S-M (2009) Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326:45–60. doi:10.1007/s11104-009-0076-0

    Article  CAS  Google Scholar 

  108. Zheng Y, Wang Z, Sun X et al (2008) Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage. Environ Exp Bot 62:129–138. doi:10.1016/j.envexpbot.2007.07.011

    CAS  Article  Google Scholar 

  109. Zheng Y, Xu X, Li Z et al (2009) Differential responses of grain yield and quality to salinity between contrasting winter wheat cultivars. Seed Sci Biotechnol 3:15–18

    Google Scholar 

Download references

Acknowledgments

The work presented in this manuscript is a part of research work conducted by PhD scholar Muhammad Arslan Ashraf (PIN No. 074-0188-Bm4-056) whose study was funded by the Higher Education Commission (HEC) through Indigenous Ph.D. Scheme. The data reported in the manuscript have been taken from Mr. Muhammad Arslan Ashraf’s Ph.D. thesis submitted to University of Agriculture, Faisalabad, and HEC.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Arslan Ashraf or Muhammad Ashraf.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3544 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M.A., Ashraf, M. Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture. Environ Sci Pollut Res 23, 6227–6243 (2016). https://doi.org/10.1007/s11356-015-5840-5

Download citation

Keywords

  • Nutrient solution
  • Different growth stages
  • Mineral composition
  • Leaf alpha tocopherols
  • Glycine betaine