Environmental Science and Pollution Research

, Volume 23, Issue 4, pp 3097–3103 | Cite as

Side effects of Bacillus thuringiensis var. kurstaki on the hymenopterous parasitic wasp Trichogramma chilonis

  • Marcel Amichot
  • Christine Curty
  • Olivia Benguettat-Magliano
  • Armel Gallet
  • Eric Wajnberg
ECOTOX, the INRA's network of ecotoxicologists


Most of the detrimental effects of using conventional insecticides to control crop pests are now well identified and are nowadays major arguments for replacing such compounds by the use of biological control agents. In this respect, the bacterium Bacillus thuringiensis var. kurstaki and Trichogramma (Hymenoptera: Trichogrammatidae) parasitic wasp species are both effective against lepidopterous pests and can actually be used concomitantly. In this work, we studied the potential side effects of B. thuringiensis var. kurstaki on Trichogramma chilonis females. We first evidenced an acute toxicity of B. thuringiensis on T. chilonis. Then, after ingestion of B. thuringiensis at sublethal doses, we focused on life history traits of T. chilonis such as longevity, reproductive success and the time spent on host eggs patches. The reproductive success of T. chilonis was not modified by B. thuringiensis while a significant effect was observed on longevity and the time spent on host eggs patches. The physiological and ecological meanings of the results obtained are discussed.


Bacillus thuringiensis Trichogramma chilonis Life history traits Interaction Biological control Bioinsecticide 



We are grateful to Alexandra Brun-Barale for her help in the preparation of the spores of 4D22.

The authors thank the Département « Santé des Plantes et Environnement, INRA » for supporting this work with the grant « Effet de biopesticides sur les stratégies reproductives optimales des insectes parasitoïdes ». MA is a member of the network « Ecotoxicologues de l’INRA, ECOTOX ».

We also want to thank the reviewers for helping us in improving the manuscript.


  1. Adang MJ, Crickmore N, Jurat-Fuentes JL (2014) Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. In: Insect midgut and insecticidal proteins. Elsevier, Brazil, pp 39–87Google Scholar
  2. Bravo A et al (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:1–9CrossRefGoogle Scholar
  3. Castagnola A, Stock S (2014) Common virulence factors and tissue targets of entomopathogenic bacteria for biological control of lepidopteran pests. Insects 5(1):139–166CrossRefGoogle Scholar
  4. Cônsoli FL, Parra JRP, Zucchi RA (2010) Egg parasitoids in agroecosystems with emphasis on trichogramma F. L. Cônsoli, J. R. P. Parra, & R. A. Zucchi, eds. Springer Science & Business Media, DordrechtCrossRefGoogle Scholar
  5. Consultants CB (2010) The 2010 worldwide biopesticides market summary, vol 1. CPL Business Consultants, WallingfordGoogle Scholar
  6. Crickmore, N., Baum, J., Bravo, A., Lereclus, D., Narva, K., Sampson, K., Schnepf, E., Sun, M. and Zeigler, D.R. “Bacillus thuringiensis toxin nomenclature” (2014)
  7. Dunbar JP, Johnson AW (1975) Bacillus thuringiensis: effects on the survival of a tobacco budworm parasitoid and predator in the laboratory. Environ Entomol 4:352–354CrossRefGoogle Scholar
  8. Ferracini C, Boivin G, Alma A (2006) Costs and benefits of host feeding in the parasitoid wasp Trichogramma turkestanica. Entomologia Experimentalis et Applicata 121:229–234CrossRefGoogle Scholar
  9. Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Marine Biol Biotechnol 3:294–299Google Scholar
  10. González JM, Brown BJ, Carlton BC (1982) Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci U S A 79:6951–6955CrossRefGoogle Scholar
  11. MacCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, LondonCrossRefGoogle Scholar
  12. Monnerat RG, Soares CM, Capdeville G et al (2009) Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants. Microb Biotechnol 2:512–520. doi: 10.1111/j.1751-7915.2009.00116.x CrossRefGoogle Scholar
  13. Pintureau B (1987) Systématique évolutive du genre Trichogramma Westwood en Europe. (in French)Google Scholar
  14. Raymond B, Wyres KL, Sheppard SK et al (2010) Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. PLoS Pathog 6:e1000905. doi: 10.1371/journal.ppat.1000905 CrossRefGoogle Scholar
  15. Ruiu L (2015) Insect pathogenic bacteria in integrated pest management. Insects 6(2):352–367CrossRefGoogle Scholar
  16. Ruiu L, Satta A, Floris I (2007) Susceptibility of the house fly pupal parasitoid Muscidifurax raptor (Hymenoptera: Pteromalidae) to the entomopathogenic bacteria Bacillus thuringiensis and Brevibacillus laterosporus. Biol Control 43:188–194CrossRefGoogle Scholar
  17. Salama HS, EI Moursy A, Zaki FN, Aboul Ela R, Abdel Razek A (1991) Parasites and predators of the meal moth Plodia interpunctella Hbn. as affected by Bacillus thuringiensis Berl. J Appl Entomol 112:244–253CrossRefGoogle Scholar
  18. Sedaratian A, Fathipour Y, Talaei-Hassanloui R (2013) Deleterious effects of Bacillus thuringiensis on biological parameters of Habrobracon hebetor parasitizing Helicoverpa armigera. BioControl 59(1):89–98CrossRefGoogle Scholar
  19. Van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16. doi: 10.1016/j.jip.2009.02.009 CrossRefGoogle Scholar
  20. Van Frankenhuyzen K (2013) Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J Invertebr Pathol 114:76–85. doi: 10.1016/j.jip.2013.05.010 CrossRefGoogle Scholar
  21. Wajnberg E (2000) Patch leaving decision rules and the Marginal Value Theorem: an experimental analysis and a simulation model. Behav Ecol 11:577–586. doi: 10.1093/beheco/11.6.577 CrossRefGoogle Scholar
  22. Wajnberg E (2006) Time allocation strategies in insect parasitoids: from ultimate predictions to proximate behavioural mechanisms. Behav Ecol Sociobiol 60:589–611CrossRefGoogle Scholar
  23. Wajnberg E, Hassan SA (1994) Biological control with egg parasitoids. CAB International, Wallingford, UKGoogle Scholar
  24. Wajnberg E, Curty C, Jervis M (2012) Intra-population genetic variation in the temporal pattern of egg maturation in a parasitoid wasp. PLoS One 7:e45915. doi: 10.1371/journal.pone.0045915 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.INRAUniv. Nice Sophia AntipolisSophia AntipolisFrance

Personalised recommendations