Skip to main content
Log in

Side effects of Bacillus thuringiensis var. kurstaki on the hymenopterous parasitic wasp Trichogramma chilonis

  • ECOTOX, the INRA's network of ecotoxicologists
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Most of the detrimental effects of using conventional insecticides to control crop pests are now well identified and are nowadays major arguments for replacing such compounds by the use of biological control agents. In this respect, the bacterium Bacillus thuringiensis var. kurstaki and Trichogramma (Hymenoptera: Trichogrammatidae) parasitic wasp species are both effective against lepidopterous pests and can actually be used concomitantly. In this work, we studied the potential side effects of B. thuringiensis var. kurstaki on Trichogramma chilonis females. We first evidenced an acute toxicity of B. thuringiensis on T. chilonis. Then, after ingestion of B. thuringiensis at sublethal doses, we focused on life history traits of T. chilonis such as longevity, reproductive success and the time spent on host eggs patches. The reproductive success of T. chilonis was not modified by B. thuringiensis while a significant effect was observed on longevity and the time spent on host eggs patches. The physiological and ecological meanings of the results obtained are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adang MJ, Crickmore N, Jurat-Fuentes JL (2014) Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. In: Insect midgut and insecticidal proteins. Elsevier, Brazil, pp 39–87

    Google Scholar 

  • Bravo A et al (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:1–9

    Article  Google Scholar 

  • Castagnola A, Stock S (2014) Common virulence factors and tissue targets of entomopathogenic bacteria for biological control of lepidopteran pests. Insects 5(1):139–166

    Article  Google Scholar 

  • Cônsoli FL, Parra JRP, Zucchi RA (2010) Egg parasitoids in agroecosystems with emphasis on trichogramma F. L. Cônsoli, J. R. P. Parra, & R. A. Zucchi, eds. Springer Science & Business Media, Dordrecht

    Book  Google Scholar 

  • Consultants CB (2010) The 2010 worldwide biopesticides market summary, vol 1. CPL Business Consultants, Wallingford

    Google Scholar 

  • Crickmore, N., Baum, J., Bravo, A., Lereclus, D., Narva, K., Sampson, K., Schnepf, E., Sun, M. and Zeigler, D.R. “Bacillus thuringiensis toxin nomenclature” (2014) http://www.btnomenclature.info/

  • Dunbar JP, Johnson AW (1975) Bacillus thuringiensis: effects on the survival of a tobacco budworm parasitoid and predator in the laboratory. Environ Entomol 4:352–354

    Article  Google Scholar 

  • Ferracini C, Boivin G, Alma A (2006) Costs and benefits of host feeding in the parasitoid wasp Trichogramma turkestanica. Entomologia Experimentalis et Applicata 121:229–234

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Marine Biol Biotechnol 3:294–299

    CAS  Google Scholar 

  • González JM, Brown BJ, Carlton BC (1982) Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci U S A 79:6951–6955

    Article  Google Scholar 

  • MacCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Monnerat RG, Soares CM, Capdeville G et al (2009) Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants. Microb Biotechnol 2:512–520. doi:10.1111/j.1751-7915.2009.00116.x

    Article  CAS  Google Scholar 

  • Pintureau B (1987) Systématique évolutive du genre Trichogramma Westwood en Europe. (in French)

    Google Scholar 

  • Raymond B, Wyres KL, Sheppard SK et al (2010) Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. PLoS Pathog 6:e1000905. doi:10.1371/journal.ppat.1000905

    Article  Google Scholar 

  • Ruiu L (2015) Insect pathogenic bacteria in integrated pest management. Insects 6(2):352–367

    Article  Google Scholar 

  • Ruiu L, Satta A, Floris I (2007) Susceptibility of the house fly pupal parasitoid Muscidifurax raptor (Hymenoptera: Pteromalidae) to the entomopathogenic bacteria Bacillus thuringiensis and Brevibacillus laterosporus. Biol Control 43:188–194

    Article  Google Scholar 

  • Salama HS, EI Moursy A, Zaki FN, Aboul Ela R, Abdel Razek A (1991) Parasites and predators of the meal moth Plodia interpunctella Hbn. as affected by Bacillus thuringiensis Berl. J Appl Entomol 112:244–253

    Article  Google Scholar 

  • Sedaratian A, Fathipour Y, Talaei-Hassanloui R (2013) Deleterious effects of Bacillus thuringiensis on biological parameters of Habrobracon hebetor parasitizing Helicoverpa armigera. BioControl 59(1):89–98

    Article  Google Scholar 

  • Van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16. doi:10.1016/j.jip.2009.02.009

    Article  CAS  Google Scholar 

  • Van Frankenhuyzen K (2013) Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J Invertebr Pathol 114:76–85. doi:10.1016/j.jip.2013.05.010

    Article  CAS  Google Scholar 

  • Wajnberg E (2000) Patch leaving decision rules and the Marginal Value Theorem: an experimental analysis and a simulation model. Behav Ecol 11:577–586. doi:10.1093/beheco/11.6.577

    Article  Google Scholar 

  • Wajnberg E (2006) Time allocation strategies in insect parasitoids: from ultimate predictions to proximate behavioural mechanisms. Behav Ecol Sociobiol 60:589–611

    Article  Google Scholar 

  • Wajnberg E, Hassan SA (1994) Biological control with egg parasitoids. CAB International, Wallingford, UK

    Google Scholar 

  • Wajnberg E, Curty C, Jervis M (2012) Intra-population genetic variation in the temporal pattern of egg maturation in a parasitoid wasp. PLoS One 7:e45915. doi:10.1371/journal.pone.0045915

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Alexandra Brun-Barale for her help in the preparation of the spores of 4D22.

The authors thank the Département « Santé des Plantes et Environnement, INRA » for supporting this work with the grant « Effet de biopesticides sur les stratégies reproductives optimales des insectes parasitoïdes ». MA is a member of the network « Ecotoxicologues de l’INRA, ECOTOX ».

We also want to thank the reviewers for helping us in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcel Amichot or Eric Wajnberg.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amichot, M., Curty, C., Benguettat-Magliano, O. et al. Side effects of Bacillus thuringiensis var. kurstaki on the hymenopterous parasitic wasp Trichogramma chilonis . Environ Sci Pollut Res 23, 3097–3103 (2016). https://doi.org/10.1007/s11356-015-5830-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5830-7

Keywords

Navigation