Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 11, pp 10477–10493 | Cite as

Endocrine-disrupting chemicals in coastal lagoons of the Po River delta: sediment contamination, bioaccumulation and effects on Manila clams

  • Nadia CasattaEmail author
  • Fabrizio Stefani
  • Fiorenzo Pozzoni
  • Licia Guzzella
  • Laura Marziali
  • Giuseppe Mascolo
  • Luigi Viganò
Recent sediments: environmental chemistry, ecotoxicology and engineering

Abstract

The large estuary that the River Po forms at its confluence into the Adriatic Sea comprises a multitude of transitional environments, including coastal lagoons. This complex system receives the nutrients transported by the River Po but also its load of chemical contaminants, which may pose a substantial (eco)toxicological risk. Despite the high ecological and economic importance of these vulnerable environments, there is a substantial lack of information on this risk. In light of the recent amendments of the European Water Framework Directive (2013/39/EU), the present study investigated the sediment contamination of six coastal lagoons of the Po delta and its effects on Manila clams (Ruditapes philippinarum), exposed in situ for 3 months. Sediment contamination and clam bioaccumulation of a wide range of chemicals, i.e. trace metals (Cd, Cr, Ni, Hg, Pb, As), polybrominated diphenyl ethers (PBDEs), alkylphenols (APs), organochlorine compounds (PCBs, DDTs), polycyclic aromatic hydrocarbons (PAHs) and organotins (TPhT, TBT), suggested a southward increase related to the riverine transports. Where the River Po influence was more direct, the concentrations of contaminants were higher, with nonylphenol and BDE-209 exceeding sediment quality guidelines. Biometric indicators suggested the influence of contamination on organism health; an inverse relationship between PBDEs in sediments and clam condition index has been found, as well as different biota-sediment accumulation factors (BSAFs) in the lagoons.

Keywords

Chronic exposure Northern Adriatic Sea Bioaccumulation Ruditapes philippinarum Lagoon sediment Priority substances 

Notes

Acknowledgments

This research was founded by the Ritmare Project, activity SP3_WP2_AZ3_UO03, “Esame del rischio ecotossicologico dovuto a inquinanti tradizionali ed emergenti in organismi residenti e degradazione di inquinanti organici nei sedimenti contaminati”. The authors are also grateful for the kind and valuable help of E. Turolla from the Istituto Delta di Ecologia Applicata, Ferrara, of V. Locaputo from the Water Research Institute, Bari, and of D. Mastroianni, Water Research Institute, Roma.

Supplementary material

11356_2015_5656_MOESM1_ESM.docx (7 mb)
ESM 1 (DOCX 7196 kb)

References

  1. Abbiati M, Mistri M, Bartoli M et al (2010) Trade-off between conservation and exploitation of the transitional water ecosystems of the northern Adriatic Sea. Chem Ecol 26:105–119. doi: 10.1080/02757541003693193 CrossRefGoogle Scholar
  2. AdbPo (2006) Caratteristiche del Bacino del Fiume Po e primo esame dell’impatto ambientale delle attività umane sulle risorse idriche - Aprile 2006 [Italian] 643Google Scholar
  3. Ademollo N, Ferrara F, Delise M et al (2008) Nonylphenol and octylphenol in human breast milk. Environ Int 34:984–987. doi: 10.1016/j.envint.2008.03.001 CrossRefGoogle Scholar
  4. Akkanen J, Tuikka A, Kukkonen JVK (2012) On the borderline of dissolved and particulate organic matter: partitioning and bioavailability of polycyclic aromatic hydrocarbons. Ecotoxicol Environ Saf 78:91–98. doi: 10.1016/j.ecoenv.2011.11.010 CrossRefGoogle Scholar
  5. Amorosi A, Sammartino I (2007) Influence of sediment provenance on background values of potentially toxic metals from near-surface sediments of Po coastal plain (Italy). Int J Earth Sci 96:389–396. doi: 10.1007/s00531-006-0104-8 CrossRefGoogle Scholar
  6. Anacleto P, Maulvault AL, Nunes ML et al (2015) Effects of depuration on metal levels and health status of bivalve molluscs. Food Control 47:493–501. doi: 10.1016/j.foodcont.2014.07.055 CrossRefGoogle Scholar
  7. ARPA-EMR (2013) Report sullo stato delle acque superficiali triennio 2010–2012 [Italian]. 176Google Scholar
  8. ARPAV (2004) Le lagune del Delta del Po: ecosistemi fragili. Rilevamento in continuo della qualità delle acque [Italian]. 33Google Scholar
  9. Beninger PG, Lucas A (1984) Seasonal variations in condition, reproductive activity, and gross biochemical composition of two species of adult clam reared in a common habitat: Tapes decussatus L. (Jeffreys) and Tapes philippinarum (Adams & Reeve). J Exp Mar Bio Ecol 79:19–37. doi: 10.1016/0022-0981(84)90028-5 CrossRefGoogle Scholar
  10. Bettinetti R, Quadroni S, Manca M et al (2012) Seasonal fluctuations of DDTs and PCBs in zooplankton and fish of Lake Maggiore (Northern Italy). Chemosphere 88:344–351. doi: 10.1016/j.chemosphere.2012.03.009 CrossRefGoogle Scholar
  11. Boldrin A, Langone L, Miserocchi S et al (2005) Po River plume on the Adriatic continental shelf: dispersion and sedimentation of dissolved and suspended matter during different river discharge rates. Mar Geol 222–223:135–158. doi: 10.1016/j.margeo.2005.06.010 CrossRefGoogle Scholar
  12. Boscolo R, Cacciatore F, Berto D, Giani M (2007) Polychlorinated biphenyls in clams Tapes philippinarum cultured in the Venice Lagoon (Italy): contamination levels and dietary exposure assessment. Food Chem Toxicol 45:1065–1075CrossRefGoogle Scholar
  13. Casatta N, Mascolo G, Roscioli C, Viganò L (2015) Tracing endocrine disrupting chemicals in a coastal lagoon (Sacca di Goro, Italy): sediment contamination and bioaccumulation in Manila clams. Sci Total Environ 511C:214–222. doi: 10.1016/j.scitotenv.2014.12.051 CrossRefGoogle Scholar
  14. Cataldo DH, Boltovskoy D, Stripeikis J, Pose M (2001) Condition index and growth rates of field caged Corbicula fluminea (Bivalvia) as biomarkers of pollution gradients in the Paraná river delta (Argentina). Aquat Ecosyst Health Manag 4:187–201. doi: 10.1080/14634980127712 CrossRefGoogle Scholar
  15. Chapman PM, Wang F, Caeiro SS (2013) Assessing and managing sediment contamination in transitional waters. Environ Int 55:71–91. doi: 10.1016/j.envint.2013.02.009 CrossRefGoogle Scholar
  16. Dang VH, Nguyen TH, Lee G-S et al (2009) In vitro exposure to xenoestrogens induces growth hormone transcription and release via estrogen receptor-dependent pathways in rat pituitary GH3 cells. Steroids 74:707–714. doi: 10.1016/j.steroids.2009.03.002 CrossRefGoogle Scholar
  17. David A, Fenet H, Gomez E (2009) Alkylphenols in marine environments: distribution monitoring strategies and detection considerations. Mar Pollut Bull 58:953–960CrossRefGoogle Scholar
  18. De Paiva MD, da Costa Marques MR, Baptista DF, Buss DF (2015) Metal bioavailability and toxicity in freshwaters. Environ Chem Lett 13:69–87. doi: 10.1007/s10311-015-0491-9 CrossRefGoogle Scholar
  19. Dedeh A, Ciutat A, Tran D, Bourdineaud J-P (2014) DNA alterations triggered by environmentally relevant polymetallic concentrations in marine clams Ruditapes philippinarum and polychaete worms Hediste diversicolor. Arch Environ Contam Toxicol 67:651–658. doi: 10.1007/s00244-014-0059-x CrossRefGoogle Scholar
  20. EC (2002) 4-Nonylphenol (branched) and nonylphenol. CAS Nos: 84852-15-3 and 25154-52-3. EINECS Nos: 284-325-5 and 246-672-0. Summ Risk Assess Report 1–32Google Scholar
  21. EC (2008) European Union Risk Assessment Report on Nickel 1715Google Scholar
  22. EC (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013, amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official J Eur Communities L 226:24, 8.2013 Google Scholar
  23. EFSA (2004) Opinion of the Scientific Panel on Contaminants in the food chain on a request from the Commission to assess the health risks to consumers associated with exposure to organotins in foodstuffs. EFSA J 102:1–119Google Scholar
  24. Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980. doi: 10.1016/j.envint.2004.03.001 CrossRefGoogle Scholar
  25. Environment Canada (2013) Canadian Environmental Protection Act, 1999 -Federal Environmental Quality Guidelines Polybrominated Diphenyl Ethers (PBDEs), 25Google Scholar
  26. Erickson M (2001) PCB properties, uses, occurrence and regulatory history. In: The University Press of Kentucky (ed) PCBs Recent Adv Environ Toxicol Heal Eff pp xi–xxxGoogle Scholar
  27. Faganeli J, Malej A, Pezdic J, Malacic V (1988) C : N : P ratios and stable C isotopie ratios as indicators of sources of organic matter in the Gulf of Trieste (Northern Adriatic). Oceanol Acta 11:377–382Google Scholar
  28. Falcieri F, Benetazzo A, Sclavo M et al (2014) Po River plume pattern variability investigated from model data. Cont Shelf Res 87:84–95. doi: 10.1016/j.csr.2013.11.001 CrossRefGoogle Scholar
  29. FAO (2014) The State of World Fisheries and Aquaculture 2014 243Google Scholar
  30. Giani M, Djakovac T, Degobbis D et al (2012) Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuar Coast Shelf Sci 115:1–13. doi: 10.1016/j.ecss.2012.08.023 CrossRefGoogle Scholar
  31. Guzzella L, Patrolecco L, Langone L, Guilizzoni P (1998) DDT and other organochlorine compounds in the Lake Maggiore sediments: a recent point source of contamination. Fresenius Environ Bull 7:79–89Google Scholar
  32. Haitzer M, Höss S, Traunspurger W, Steinberg C (1998) Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms—a review. Chemosphere 37:1335–1362CrossRefGoogle Scholar
  33. Hitch R, Day H (1992) Unusual persistence of DDT in some Western USA soils. Bull Environ Contam Toxicol. doi: 10.1007/BF00194381 Google Scholar
  34. Jahnke A, MacLeod M, Wickström H, Mayer P (2014) Equilibrium sampling to determine the thermodynamic potential for bioaccumulation of persistent organic pollutants from sediment. Environ Sci Technol 48:11352–11359. doi: 10.1021/es503336w CrossRefGoogle Scholar
  35. Josefsson S, Leonardsson K, Gunnarsson JS, Wiberg K (2010) Bioturbation-driven release of buried PCBs and PBDEs from different depths in contaminated sediments. Environ Sci Technol 44:7456–7464. doi: 10.1021/es100615g CrossRefGoogle Scholar
  36. Karickhoff S, Brown D, Scott T (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241–248. doi: 10.1016/0043-1354(79)90201-X CrossRefGoogle Scholar
  37. Kerambrun E, Henry F, Rabhi K, Amara R (2014) Effects of chemical stress and food limitation on the energy reserves and growth of turbot, Scophthalmus maximus. Environ Sci Pollut Res Int 21:13488–13495. doi: 10.1007/s11356-014-3281-1 CrossRefGoogle Scholar
  38. Khairy HM, Faragallah HM, Hussein NR and Dorgham MM (2014) Environmental characteristics and nutritional level of chronically eutrophic bay on Alexandria Sea coast, Egypt. Indian J Geo Mar Sci 43Google Scholar
  39. Koelmans AA, Jonker MTO, Cornelissen G et al (2006) Black carbon: the reverse of its dark side. Chemosphere 63:365–377. doi: 10.1016/j.chemosphere.2005.08.034 CrossRefGoogle Scholar
  40. Komorita T, Kajihara R, Tsutsumi H et al (2014) Food sources for Ruditapes philippinarum in a coastal lagoon determined by mass balance and stable isotope approaches. PLoS One 9, e86732. doi: 10.1371/journal.pone.0086732 CrossRefGoogle Scholar
  41. La Guardia MJ, Hale RC, Harvey E et al (2012) In situ accumulation of HBCD, PBDEs, and several alternative flame-retardants in the bivalve (Corbicula fluminea) and gastropod (Elimia proxima). Environ Sci Technol 46:5798–5805. doi: 10.1021/es3004238 CrossRefGoogle Scholar
  42. Lazorchak JM, McCormick FH, Henry TR, Herlihy AT (2003) Contamination of fish in streams of the Mid-Atlantic Region: an approach to regional indicator selection and wildlife assessment. Environ Toxicol Chem 22:545–553. doi: 10.1002/etc.5620220312 CrossRefGoogle Scholar
  43. Lopes C, Persat H, Babut M (2012) Transfer of PCBs from bottom sediment to freshwater river fish: a food-web modelling approach in the Rhône River (France) in support of sediment management. Ecotoxicol Environ Saf 81:17–26. doi: 10.1016/j.ecoenv.2012.04.007 CrossRefGoogle Scholar
  44. Lubet P (1959) Recherches sur le cycle sexuel et l’émission des gamètes chez les mytilides et les pectinides (Mollusques bivalves). Rev Des Trav l’Institut Des Pêches Marit 23:387–548Google Scholar
  45. Mackay D, Fraser A (2000) Kenneth Mellanby Review Award. Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut 110:375–391CrossRefGoogle Scholar
  46. Marshall Adams S (1999) Ecological role of lipids in the health and success of fish populations. In: Arts MT, Wainman BC (eds) Lipids in freshwater ecosystems. Springer, New York, NY, pp 132–160CrossRefGoogle Scholar
  47. Martinez E, Gros M, Lacorte S, Barceló D (2004) Simplified procedures for the analysis of polycyclic aromatic hydrocarbons in water, sediments and mussels. J Chromatogr A 1047:181–188. doi: 10.1016/j.chroma.2004.07.003 Google Scholar
  48. Mearns AJ, Reish DJ, Oshida PS et al (2013) Effects of pollution on marine organisms. Water Environ Res 85:1828–1933. doi: 10.2175/106143013X13698672322949 CrossRefGoogle Scholar
  49. Moermond CTA, Roozen FCJM, Zwolsman JJG, Koelmans AA (2004) Uptake of sediment-bound bioavailable polychlorobiphenyls by benthivorous carp (Cyprinus carpio). Environ Sci Technol 38:4503–4509CrossRefGoogle Scholar
  50. Moschino V, Delaney E, Da Ros L (2012) Assessing the significance of Ruditapes philippinarum as a sentinel for sediment pollution: bioaccumulation and biomarker responses. Environ Pollut 171:52–60. doi: 10.1016/j.envpol.2012.07.024 CrossRefGoogle Scholar
  51. Mrema EJ, Rubino FM, Brambilla G et al (2013) Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology 307:74–88CrossRefGoogle Scholar
  52. Nelson BW (1970) Hydrography, sediment dispersal, and recent historical development of the Po River Delta, Italy. In: Morgan J (ed) Deltaic sediment. Mod Anc Spec Publ SEPM, pp 152–184Google Scholar
  53. Newton A, Icely J, Cristina S et al (2013) An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar Coast Shelf Sci 140:95–121CrossRefGoogle Scholar
  54. Nielsen E, Østergaard G, Thorup I et al (2000) Toxicological evaluation and limit values for nonylphenol, nonylphenol ethoxylates, tricresyl, phosphates and benzoic acid. Environ Proj Copenaghen DK Danish Environ Prot Agency N 512:43Google Scholar
  55. ODEQ (2007) Guidance for assessing bioaccumulative chemicals of concern in sediment. Or Dep Environ Qual Environ Cleanup Program 89Google Scholar
  56. OSPAR (2009) Background Document on CEMP Assessment Criteria for QSR 2010. Monit Assess Ser 24Google Scholar
  57. Ozkoc HB, Bakan G, Ariman S (2007) Distribution and bioaccumulation of organochlorine pesticides along the Black Sea coast. Environ Geochem Health 29:59–68. doi: 10.1007/s10653-006-9064-y CrossRefGoogle Scholar
  58. Paul-Pont I, de Montaudouin X, Gonzalez P et al (2010) How life history contributes to stress response in the Manila clam Ruditapes philippinarum. Environ Sci Pollut Res Int 17:987–998. doi: 10.1007/s11356-009-0283-5 CrossRefGoogle Scholar
  59. Pettine M, Patrolecco L, Camusso M, Crescenzio S (1998) Transport of carbon and nitrogen to the Northern Adriatic Sea by the Po River. Estuar Coast Shelf Sci 46:127–142. doi: 10.1006/ecss.1997.0303 CrossRefGoogle Scholar
  60. Piva F, Ciaprini F, Onorati F et al (2011) Assessing sediment hazard through a weight of evidence approach with bioindicator organisms: a practical model to elaborate data from sediment chemistry, bioavailability, biomarkers and ecotoxicological bioassays. Chemosphere 83:475–485. doi: 10.1016/j.chemosphere.2010.12.064 CrossRefGoogle Scholar
  61. Poma G, Binelli A, Volta P et al (2014a) Evaluation of spatial distribution and accumulation of novel brominated flame retardants, HBCD and PBDEs in an Italian subalpine lake using zebra mussel (Dreissena polymorpha). Environ Sci Pollut Res Int 21:9655–9664. doi: 10.1007/s11356-014-2826-7 CrossRefGoogle Scholar
  62. Poma G, Roscioli C, Guzzella L (2014b) PBDE, HBCD and novel brominated flame retardant contamination in sediments from Lake Maggiore (Northern Italy). Environ Monit Assess 186:7683–7692. doi: 10.1007/s10661-014-3959-3 CrossRefGoogle Scholar
  63. Quevauviller P, Ariese F (2001) New sediment reference material for the quality control of butyltin and phenyltin analysis. TrAC Trends Anal Chem 20:207–218. doi: 10.1016/S0165-9936(01)00059-0 CrossRefGoogle Scholar
  64. Ramu K, Isobe T, Takahashi S et al (2010) Spatial distribution of polybrominated diphenyl ethers and hexabromocyclododecanes in sediments from coastal waters of Korea. Chemosphere 79:713–719. doi: 10.1016/j.chemosphere.2010.02.048 CrossRefGoogle Scholar
  65. Roberts DA (2012) Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments. Environ Int 40:230–243. doi: 10.1016/j.envint.2011.11.013 CrossRefGoogle Scholar
  66. Sacchi A, Mouneyrac C, Bolognesi C et al (2013) Biomonitoring study of an estuarine coastal ecosystem, the Sacca di Goro lagoon, using Ruditapes philippinarum (Mollusca: Bivalvia). Environ Pollut 177:82–89. doi: 10.1016/j.envpol.2013.01.042 CrossRefGoogle Scholar
  67. Sfriso A, Facca C, Raccanelli S (2014) PCDD/F and dioxin-like PCB bioaccumulation by Manila clam from polluted areas of Venice lagoon (Italy). Environ Pollut 184:290–297CrossRefGoogle Scholar
  68. Solé M, Manzanera M, Bartolomé A et al (2013) Persistent organic pollutants (POPs) in sediments from fishing grounds in the NW Mediterranean: ecotoxicological implications for the benthic fish Solea sp. Mar Pollut Bull 67:158–165. doi: 10.1016/j.marpolbul.2012.11.018 CrossRefGoogle Scholar
  69. Spillman CM, Hamilton DP, Imberger J (2009) Management strategies to optimise sustainable clam (Tapes philippinarum) harvests in Barbamarco Lagoon, Italy. Estuar Coast Shelf Sci 81:267–278. doi: 10.1016/j.ecss.2008.11.003 CrossRefGoogle Scholar
  70. Stewart M, Olsen G, Hickey CW et al (2014) A survey of emerging contaminants in the estuarine receiving environment around Auckland, New Zealand. Sci Total Environ 468–469:202–210. doi: 10.1016/j.scitotenv.2013.08.039 CrossRefGoogle Scholar
  71. Tian S, Zhang Y, Song C et al (2015) Bioaccumulation and biotransformation of polybrominated diphenyl ethers in the marine bivalve (Scapharca subcrenata): influence of titanium dioxide nanoparticles. Mar Pollut Bull 90:48–53. doi: 10.1016/j.marpolbul.2014.11.031 CrossRefGoogle Scholar
  72. Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119. doi: 10.1016/j.envpol.2011.10.025 CrossRefGoogle Scholar
  73. Turolla E (2008) The breeding of Manila clams in Po Delta. Graf, AdriatGoogle Scholar
  74. US-EPA (1998) Test methods for evaluating solid waste, physical/chemical methods; SW-846, US Government Printing Office, Washington, DC.Google Scholar
  75. US-EPA (2000) Guidance for assessing chemical contaminant data for use in fish advisories, volume 2: Risk assessment and fish consumption limits, 3rd edition. U S Environ Prot Agency Wash DC 823:00–008Google Scholar
  76. US-EPA (2006) Region III BTAG Marine Sediment Screeneng Benchmarks 6Google Scholar
  77. Van Ael E, Covaci A, Blust R, Bervoets L (2012) Persistent organic pollutants in the Scheldt estuary: environmental distribution and bioaccumulation. Environ Int 48:17–27CrossRefGoogle Scholar
  78. Viganò L, Farkas A, Guzzella L et al (2007) The accumulation levels of PAHs, PCBs and DDTs are related in an inverse way to the size of a benthic amphipod (Echinogammarus stammeri Karaman) in the River Po. Sci Total Environ 373:131–145. doi: 10.1016/j.scitotenv.2006.11.006 CrossRefGoogle Scholar
  79. Viganò L, Roscioli C, Guzzella L (2011) Decabromodiphenyl ether (BDE-209) enters the food web of the River Po and is metabolically debrominated in resident cyprinid fishes. Sci Total Environ 409:4966–4972. doi: 10.1016/j.scitotenv.2011.07.062 CrossRefGoogle Scholar
  80. Viganò L, Mascolo G, Roscioli C (2015) Emerging and priority contaminants with endocrine active potentials in sediments and fish from the River Po (Italy). Environ Sci Pollut Res Int. doi: 10.1007/s11356-015-4388-8 Google Scholar
  81. Vincenzi S, Caramori G, Rossi R, De Leo GA (2007) A comparative analysis of three habitat suitability models for commercial yield estimation of Tapes philippinarum in a North Adriatic coastal lagoon (Sacca di Goro, Italy). Mar Pollut Bull 55:579–590. doi: 10.1016/j.marpolbul.2007.09.016 CrossRefGoogle Scholar
  82. Vincenzi S, De Leo GA, Munari C, Mistri M (2014) Rapid estimation of potential yield for data-poor Tapes philippinarum fisheries in North Adriatic coastal lagoons. Hydrobiologia 724:267–277. doi: 10.1007/s10750-013-1742-z CrossRefGoogle Scholar
  83. Wang Z-Y, Zhang H-Y (2013) Rational drug repositioning by medical genetics. Nat Biotechnol 31:1080–1082. doi: 10.1038/nbt.2758 CrossRefGoogle Scholar
  84. Wang Z, Yang C, Brown C, et al. (2008) A case study: distinguishing pyrogenic hydrocarbons from petrogenic hydrocarbons. Int Oil Spill ConfGoogle Scholar
  85. Wang Z, Ma X, Lin Z et al (2009) Congener specific distributions of polybrominated diphenyl ethers (PBDEs) in sediment and mussel (Mytilus edhongulis) of the Bo Sea, China. Chemosphere 74:896–901. doi: 10.1016/j.chemosphere.2008.10.064 CrossRefGoogle Scholar
  86. Yakan SD, Henkelmann B, Schramm K-W, Okay OS (2013) Bioaccumulation-depuration kinetics and effects of phenanthrene on Mediterranean mussel (Mytilus galloprovincialis). J Environ Sci Health A Tox Hazard Subst Environ Eng 48:1037–1046. doi: 10.1080/10934529.2013.773799 CrossRefGoogle Scholar
  87. Yogui GT, Sericano JL (2009) Polybrominated diphenyl ether flame retardants in the U.S. marine environment: a review. Environ Int 35:655–666. doi: 10.1016/j.envint.2008.11.001 CrossRefGoogle Scholar
  88. Yu F, Zong Y, Lloyd JM et al (2010) Bulk organic g13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China. Estuar Coast Shelf Sci 87:618–630. doi: 10.1016/j.ecss.2010.02.018 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nadia Casatta
    • 1
    Email author
  • Fabrizio Stefani
    • 1
  • Fiorenzo Pozzoni
    • 1
  • Licia Guzzella
    • 1
  • Laura Marziali
    • 1
  • Giuseppe Mascolo
    • 2
  • Luigi Viganò
    • 1
  1. 1.Water Research InstituteNational Research Council of ItalyBrugherio (MB)Italy
  2. 2.Water Research InstituteNational Research Council of ItalyBariItaly

Personalised recommendations