Environmental Science and Pollution Research

, Volume 23, Issue 11, pp 10317–10334 | Cite as

Modeling the dynamics of DDT in a remote tropical floodplain: indications of post-ban use?

  • Annelle Mendez
  • Carla A. NgEmail author
  • João Paulo Machado Torres
  • Wanderley Bastos
  • Christian Bogdal
  • George Alexandre dos Reis
  • Konrad Hungerbuehler
Recent sediments: environmental chemistry, ecotoxicology and engineering


Significant knowledge gaps exist regarding the fate and transport of persistent organic pollutants like dichlorodiphenyltrichloroethane (DDT) in tropical environments. In Brazil, indoor residual spraying with DDT to combat malaria and leishmaniasis began in the 1950s and was banned in 1998. Nonetheless, high concentrations of DDT and its metabolites were recently detected in human breast milk in the community of Lake Puruzinho in the Brazilian Amazon. In this work, we couple analysis of soils and sediments from 2005 to 2014 at Puruzinho with a novel dynamic floodplain model to investigate the movement and distribution of DDT and its transformation products (dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD)) and implications for human exposure. The model results are in good agreement with the accumulation pattern observed in the measurements, in which DDT, DDE, and DDD (collectively, DDX) accumulate primarily in upland soils and sediments. However, a significant increase was observed in DDX concentrations in soil samples from 2005 to 2014, coupled with a decrease of DDT/DDE ratios, which do not agree with model results assuming a post-ban regime. These observations strongly suggest recent use. We used the model to investigate possible re-emissions after the ban through two scenarios: one assuming DDT use for IRS and the other assuming use against termites and leishmaniasis. Median DDX concentrations and p,p′-DDT/p,p′-DDE ratios from both of these scenarios agreed with measurements in soils, suggesting that the soil parameterization in our model was appropriate. Measured DDX concentrations in sediments were between the two re-emission scenarios. Therefore, both soil and sediment comparisons suggest re-emissions indeed occurred between 2005 and 2014, but additional measurements would be needed to better understand the actual re-emission patterns. Monte Carlo analysis revealed model predictions for sediments were very sensitive to highly uncertain parameters associated with DDT degradation and partitioning. With this model as a tool for understanding inter-media cycling, additional research to refine these parameters would improve our understanding of DDX fate and transport in tropical sediments.


DDT Malaria Tropics Multimedia modeling Environmental fate Pesticides Floodplain POPs 



The authors would like to acknowledge the financial support of the Brazilian Swiss Joint Research Programme in Switzerland, and from CNPq/MCTi and FAPERJ/SECT/RJ in Brazil.

Supplementary material

11356_2015_5641_MOESM1_ESM.docx (2.3 mb)
ESM 1 (DOCX 2.32 mb)


  1. Aislabie JM, Richards NK, Boul HL (1997) Microbial degradation of DDT and its residues—a review. N Z J Agric Res 40:269–282. doi: 10.1080/00288233.1997.9513247 CrossRefGoogle Scholar
  2. Alcântara E, Novo E, Stech J, Lorenzzetti J, Barbosa C, Assireu A, Souza A (2010) A contribution to understanding the turbidity behaviour in an Amazon floodplain. Hydrol Earth Syst Sci 14:351–364. doi: 10.5194/hess-14-351-2010 CrossRefGoogle Scholar
  3. Alegria H, Bidleman TF, Figueroa MS (2006) Organochlorine pesticides in the ambient air of Chiapas, Mexico. Environ Pollut 140:483–491. doi: 10.1016/j.envpol.2005.08.007 CrossRefGoogle Scholar
  4. Almeida R (2006) Geostatistic analysis of mercury concentrations in Puruzinho Lake-Western Amazon. Dissertation, Universidade Federal de Rondônia (in Portuguese)Google Scholar
  5. Almeida FV, Centeno AJ, Bisinoti MC, Jardim WF (2007) Persistent toxic substances in Brazil. Química Nov. 30:1976–1985. (in Portuguese)Google Scholar
  6. Artaxo P, Gerab F, Yamasoe M (1998) Long term atmospheric aerosol characterization in the Amazon Basin. In: Wasserman J, Silva-Filho E, Villas-Boas R (eds) Environmental geochemistry in the tropics, vol 72. Lecture Notes in Earth Sciences. Springer Berlin Heidelberg, pp 247–272. doi: 10.1007/BFb0010918
  7. Artaxo P, Martins JV, Yamasoe, MA, Procópio AS, Pauliquevis TM, Andreae MO, Guyon P, Gatti LV, Leal AM (2002) Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. J Geophys Res Atmos 107:LBA 49-1-LBA 49–14. doi: 10.1029/2001JD000666
  8. ASTDR (2002) Toxicological profile for DDT, DDE, DDD. Department of Health and Human Services, Public Health Service, AtlantaGoogle Scholar
  9. Azeredo A (2007) Organochlorine pesticides and PAHs: A study of two groups of organic pollutants. Dissertation, Universidade Federal do Rio de Janeiro (in Portuguese)Google Scholar
  10. Azeredo A, Torres JPM, de Freitas Fonseca M, Britto JL, Bastos WR, Azevedo e Silva CE, Cavalcanti G, Meire RO et al. (2008) DDT and its metabolites in breast milk from the Madeira River basin in the Amazon, Brazil. Chemosphere 73:S246-S251. doi: 10.1016/j.chemosphere.2007.04.090
  11. Azevedo e Silva CE (2011) Study of the biomagnification of mercury in fish from Puruiznho Lake (AM) through the use of carbon and nitrogen stable isotopes. Dissertation, Universidade Federal do Rio de Janeiro (in Portuguese)Google Scholar
  12. Bahm K, Khalil MAK (2004) A new model of tropospheric hydroxyl radical concentrations. Chemosphere 54:143–166. doi: 10.1016/j.chemosphere.2003.08.006 CrossRefGoogle Scholar
  13. Barra R, Colombo JC, Eguren G, et al (2006) Persistent Organic Pollutants (POPs) in Eastern and Western South American Countries. In: Ware DGW, Nigg DHN, Doerge DDR (eds) Reviews of Environmental Contamination and Toxicology. Springer New York, pp 1–33. doi: 10.1007/0-387-30638-2_1
  14. Becker L, Scheringer M, Schenker U, Hungerbühler K (2011) Assessment of the environmental persistence and long-range transport of endosulfan. Environ Pollut 159:1737–1743. doi: 10.1016/j.envpol.2011.02.012 CrossRefGoogle Scholar
  15. Boethling RS, Howard PH, Beauman JA, Larosch ME (1995) Factors for intermedia extrapolation in biodegradability assessment. Chemosphere 30:741–752. doi: 10.1016/0045-6535(94)00439-2 CrossRefGoogle Scholar
  16. Bogdal C (2012) Report on passive air sampling under the global monitoring plan for persistent organic pollutants—GMP projects 2010–2011. United Nations Environment Programme, Division of Technology, Industry, and EconomicsGoogle Scholar
  17. Bogdal C, Schmid P, Kohler M, Müller CE, Iozza S, Bucheli TD, Scheringer M, Hungerbühler K (2008) Sediment record and atmospheric deposition of brominated flame retardants and organochlorine compounds in lake Thun, Switzerland: lessons from the past and evaluation of the present. Environ Sci Technol 42:6817–6822. doi: 10.1021/es800964z
  18. Bogdal C, Scheringer M, Abad E, Abalos M, van Bavel B, Hagberg J, Fiedler H (2013) Worldwide distribution of persistent organic pollutants in air, including results of air monitoring by passive air sampling in five continents. TrAC Trends Anal Chem 46:150–161. doi: 10.1016/j.trac.2012.05.011 CrossRefGoogle Scholar
  19. Bornman MS, Barnhoorn IEJ, Genthe B (2010) DDT for malaria control: effects in indicators and health risk. Water Research Comission, Report No. 1674/1/09Google Scholar
  20. Bouwman H, Kylin H (2009) Malaria control insecticide residues in breast milk: the need to consider infant health risks. Environ Health Perspect 117:1477–1480. doi: 10.1289/ehp.0900605 CrossRefGoogle Scholar
  21. Bouwman H, van den Berg H, Kylin H (2011) DDT and malaria prevention: addressing the paradox. Environ Health Perspect 119:744–747. doi: 10.1289/ehp.1002127 CrossRefGoogle Scholar
  22. Buser AM, MacLeod M, Scheringer M, Mackay D, Bonnell M, Russell MH, DePinto JV, Hungerbühler K (2012) Good modeling practice guidelines for applying multimedia models in chemical assessments. Integr Environ Assess Manag 8:703–708. doi: 10.1002/ieam.1299
  23. Camenzuli L, Scheringer M, Gaus C, Ng CA, Hungerbühler K (2012) Describing the environmental fate of diuron in a tropical river catchment. Sci Total Environ 440:178–185. doi: 10.1016/j.scitotenv.2012.07.037 CrossRefGoogle Scholar
  24. Eggen T, Majcherczyk A (2006) Effects of zero-valent iron (Fe0) and temperature on the transformation of DDT and its metabolites in lake sediment. Chemosphere 62:1116–1125. doi: 10.1016/j.chemosphere.2005.05.044 CrossRefGoogle Scholar
  25. Eskenazi B, Chevrier J, Rosas LG, Anderson HA, Bornman MS, Bouwman H, Chen A, Cohn BA, et al. (2009) The pine river statement: human health consequences of DDT use. Environ Health Persp 117:1359–1367. doi: 10.1289/ehp.11748
  26. FAO, WHO (2000) Pesticide residues in food. Report of the Joint Meeting of the FAO panel of experts on pesticide residues in food and the environment and the WHO Core Assessment Group. Food and Agriculture Organization Plant Production and Protection Paper 163. Accessed January 20 2015
  27. Fenner K, Scheringer M, Hungerbühler K (2000) Persistence of parent compounds and transformation products in a level IV multimedia model. Environ Sci Technol 34:3809–3817. doi: 10.1021/es0000347 CrossRefGoogle Scholar
  28. Ferreira CP, De-Oliveira ACAX, Paumgartten FJR (2011) Serum concentrations of DDT and DDE among malaria control workers in the amazon region. J Occup Health 53:115–122. doi: 10.1539/joh.O10026 CrossRefGoogle Scholar
  29. Foght J, April T, Biggar K, Aislabie J (2001) Bioremediation of DDT-contaminated soils: a review. Bioremediation J 5:225–246. doi: 10.1080/20018891079302 CrossRefGoogle Scholar
  30. Ge J, Woodward LA, Li QX, Wang J (2013) Composition, distribution and risk assessment of organochlorine pesticides in soils from the Midway Atoll, North Pacific Ocean. Sci Total Environ 452–453:421–426. doi: 10.1016/j.scitotenv.2013.03.015 CrossRefGoogle Scholar
  31. GEF (2006) Development of a national implementation plan in Brazil as a first step to implement the Stockholm Convention on persistent organic pollutants (POPs). Global Environmental Facility United Nations Environmental Program. Accessed 10 September 2012
  32. Harner T, Wideman JL, Jantunen LMM, Bidleman TF, Parkhurst WJ (1999) Residues of organochlorine pesticides in Alabama soils. Environ Pollut 106:323–332. doi: 10.1016/S0269-7491(99)00110-4 CrossRefGoogle Scholar
  33. Herrera-Portugal C, Ochoa H, Franco-Sánchez G, Yáñez L, Díaz-Barriga F (2005) Environmental pathways of exposure to DDT for children living in a malarious area of Chiapas, Mexico. Environ Res 99:158–163. doi: 10.1016/j.envres.2005.03.010 CrossRefGoogle Scholar
  34. Hitch R, Day H (1992) Unusual persistence of DDT in some Western USA soils. Bull Environ Contam Toxicol 48: 259–264. doi: 10.1007/BF00194381
  35. Hollander A, Huijbregts MAJ, Ragas AMJ, Meent D (2006) BasinBox: a generic multimedia fate model for predicting the fate of chemicals in river catchments. Hydrobiologia 565:21–38. doi: 10.1007/s10750-005-1903-9 CrossRefGoogle Scholar
  36. Humphries MS (2013) DDT residue contamination in sediments from lake Sibaya in northern KwaZulu-Natal, South Africa: implications for conservation in a world heritage site. Chemosphere 93:1494–1499. doi: 10.1016/j.chemosphere.2013.07.047 CrossRefGoogle Scholar
  37. Hussain A, Maqbool U, Asi M (1994a) Studies on dissipation and degradation of 14C-DDT and 14C-DDE in Pakistani soils under field conditions. J Environ Sci Health Part B 29:1-15. doi: 10.1080/03601239409372853
  38. Hussain A, Maqbool U, Asi M (1994b) Studies on the dissipation of 14C-DDT from water and solid surfaces. J Environ Sci Health B 29:177–184. doi: 10.1080/03601239409372870 CrossRefGoogle Scholar
  39. Hussain A, Tirmazi SH, Maqbool U, Asi M, Chaughtai FA (1994c) Studies of the effects of temperatures and solar radiation on volatilization, mineralization and binding of 14C-DDT in soil under laboratory conditions. J Environ Sci Health B 29:141–151. doi: 10.1080/03601239409372866 CrossRefGoogle Scholar
  40. INMET (2012) Climatological Normals of Brazil 1961-1990. Accessed 10 October 2013 (in Portuguese)
  41. INMET (2015) Automatic stations. Accessed 1 February 2014 (in Portuguese)
  42. Kadir HA (1988) Dissipation and degradation of 14C-DDT in Malaysian soils. International Atomic Energy Agency (IAEA). Technical Document 476:41–45Google Scholar
  43. Kenneth DR (2003) What do we know about the fate of pesticides in tropical ecosystems? In: Environmental fate and effects of pesticides, vol 853. ACS Symposium Series, vol 853. American Chemical Society, pp 96–123. doi: 10.1021/bk-2003-0853.ch006
  44. Kuo-Ching Ma DM, Sum CL, Wan YS (2006) Insecticides. In: Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, second edition. CRC Press, pp 3711–4022. doi: 10.1201/9781420044393.ch18
  45. Lalah JO, Acholla FV, Wandiga SO (1994) Fate of 14C-p,p’-DDT in Kenyan tropical soils. J Environ Sci Health B 29:57–64. doi: 10.1080/03601239409372858 CrossRefGoogle Scholar
  46. Lawrence Boul H (1996) Effect of soil moisture on the fate of radiolabelled DDT and DDE in vitro. Chemosphere 32:855–866. doi: 10.1016/0045-6535(96)00018-5 CrossRefGoogle Scholar
  47. Linders J, Mensink H, Stephenson G, Wauchope D, Racke K (2000) Foliar interception and retention values after pesticide application. A proposal for standardized values for environmental risk assessment. Pure Appl Chem 72:2199–2218CrossRefGoogle Scholar
  48. Loiola C, da Silva C, Tauil P (2002) Malaria control in Brazil: 1965 to 2001. Rev Panam Salud Publica 11:235–244CrossRefGoogle Scholar
  49. Longnecker MP (2005) Invited commentary: why DDT matters now. Am J Epidemiol 162:726–728. doi: 10.1093/aje/kwi277 CrossRefGoogle Scholar
  50. Mackay D (2001) Multimedia environmental models: the fugacity approach, second edition. CRC PressGoogle Scholar
  51. MacLeod M, Fraser AJ, Mackay D (2002) Evaluating and expressing the propagation of uncertainty in chemical fate and bioaccumulation models. Environ Toxicol Chem 21:700–709. doi: 10.1002/etc.5620210403 CrossRefGoogle Scholar
  52. Mariën K, Laflamme DM (1995) Determination of a tolerable daily intake of DDT for consumers of DDT contaminated fish from the lower Yakima River, Washington. Risk Anal 15:709–717. doi: 10.1111/j.1539-6924.1995.tb01343.x CrossRefGoogle Scholar
  53. Martínez F-B, Trejo-Acevedo A, Betanzos A, Espinosa-Reyes G, Alegría-Torres J, Maldonado I (2012) Assessment of DDT and DDE levels in soil, dust, and blood samples from Chihuahua, Mexico. Arch Environ Contam Toxicol 62:351–358. doi: 10.1007/s00244-011-9700-0 CrossRefGoogle Scholar
  54. Martínez-Salinas R, Díaz-Barriga F, Batres-Esquivel L, Pérez-Maldonado I (2011) Assessment of the levels of DDT and its metabolites in soil and dust samples from Chiapas, Mexico. Bull Environ Contam Toxicol 86:33–37. doi: 10.1007/s00128-010-0174-y CrossRefGoogle Scholar
  55. Meire RO, Lee SC, Yao Y, Targino AC, Torres JPM, Harner T (2012) Seasonal and altitudinal variations of legacy and current-use pesticides in the Brazilian tropical and subtropical mountains. Atmos Environ 59:108–116. doi: 10.1016/j.atmosenv.2012.05.018 CrossRefGoogle Scholar
  56. MMA (2015) Brazilian national implementation plan: Stockholm convention. Brazilian Ministry of Environment, Brasília (in Portuguese)Google Scholar
  57. Moreira-Turcq P, Jouanneau JM, Turcq B, Seyler P, Weber O, Guyot JL (2004) Carbon sedimentation at Lago Grande de Curuai, a floodplain lake in the low Amazon region: insights into sedimentation rates. Palaeogeogr Palaeoclimatol Palaeoecol 214:27–40. doi: 10.1016/j.palaeo.2004.06.013 CrossRefGoogle Scholar
  58. Nowell LH (1999) Analysis of key topics? Sources, behavior, and transport. In: Pesticides in Stream Sediment and Aquatic Biota. CRC Press. doi: 10.1201/9781439822708.ch5
  59. Oliveira RC, Dorea JG, Bernardi JV, Bastos WR, Almeida R, Manzatto AG (2010) Fish consumption by traditional subsistence villagers of the Rio Madeira (Amazon): impact on hair mercury. Ann Hum Biol 37:629–642. doi: 10.3109/03014460903525177 CrossRefGoogle Scholar
  60. Oliveira-Ferreira J, Lacerda M, Brasil P, Ladislau J, Tauil P, Daniel-Ribeiro C (2010) Malaria in Brazil: an overview. Malar J 9:115CrossRefGoogle Scholar
  61. Pereira WE, Domagalski JL, Hostettler FD, Brown LR, Rapp JB (1996) Occurrence and accumulation of pesticides and organic contaminants in river sediment, water and clam tissues from the San Joaquin River and tributaries, California. Environ Toxicol Chem 15:172–180. doi: 10.1002/etc.5620150216 CrossRefGoogle Scholar
  62. Pérez-Maldonado IN et al (2010) Assessment of DDT levels in selected environmental media and biological samples from Mexico and Central America. Chemosphere 78:1244–1249. doi: 10.1016/j.chemosphere.2009.12.040 CrossRefGoogle Scholar
  63. Peters AJ, Jones KC, Flower RJ, Appleby PG, Ramdani M, Kraïem MM, Fathi AA (2001) Recent environmental change in North African wetland lakes: a baseline study of organochlorine contaminant residues in sediments from nine sites in the CASSARINA project. Aquat Ecol 35:449–459. doi: 10.1023/A:1011980226851 CrossRefGoogle Scholar
  64. Pozo K, Harner T, Lee SC, Wania F, Muir DCG, Jones KC (2008) Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPS study. Environ Sci Technol 43:796–803. doi: 10.1021/es802106a CrossRefGoogle Scholar
  65. Qiu X, Zhu T, Li J, Pan H, Li Q, Miao G, Gong J (2004) Organochlorine pesticides in the air around the Taihu Lake, China. Environ Sci Technol 38:1368–1374. doi: 10.1021/es035052d CrossRefGoogle Scholar
  66. Ricking M, Schwarzbauer J (2012) DDT isomers and metabolites in the environment: an overview. Environ Chem Lett 10:317–323. doi: 10.1007/s10311-012-0358-2 CrossRefGoogle Scholar
  67. Ritter R, Scheringer M, MacLeod M, Hungerbuhler K (2011) Assessment of nonoccupational exposure to DDT in the tropics and the north: relevance of uptake via inhalation from indoor residual spraying. Environ Health Perspect 119:707–712. doi: 10.1289/Ehp.1002542 CrossRefGoogle Scholar
  68. Saldanha GC, Bastos WR, Torres JPM, Malm O (2010) DDT in fishes and soils of lakes from Brazilian Amazon: case study of Puruzinho Lake (Amazon, Brazil). J Braz Chem Soc 21:306–311CrossRefGoogle Scholar
  69. Samuel T, Pillai MKK (1988) Persistence and fate of 14C-p,p’-DDT in an Indian sandy loam soil under field and laboratory conditions. International Atomic Energy Agency (IAEA). Technical Document 476:27–39Google Scholar
  70. Santschi PH, Presley BJ, Wade TL, Garcia-Romero B, Baskaran M (2001) Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Mar Environ Res 52:51–79. doi: 10.1016/S0141-1136(00)00260-9 CrossRefGoogle Scholar
  71. Schenker U, Scheringer M, Hungerbühler K (2007) Including degradation products of persistent organic pollutants in a global multi-media box model. Environ Sci Poll Res Int 14:145–152. doi: 10.1065/espr2007.03.398 CrossRefGoogle Scholar
  72. Schenker U, Scheringer M, Hungerbühler K (2008) Investigating the global fate of DDT: model evaluation and estimation of future trends. Environ Sci Technol 42:1178–1184. doi: 10.1021/es070870h CrossRefGoogle Scholar
  73. Schenker U, Scheringer M, Sohn MD, Maddalena RL, McKone TE, Hungerbühler K (2009) Using Information on uncertainty to improve environmental fate modeling: a case study on DDT. Environ Sci Technol 43:128–134. doi: 10.1021/es801161x CrossRefGoogle Scholar
  74. Sjoeib F, Anwar E, Tungguldihardjo MS (1994) Behaviour of DDT and DDE in Indonesian tropical environments. J Environ Sci Health B 29:17–24. doi: 10.1080/03601239409372854 CrossRefGoogle Scholar
  75. Sommerfreund JK et al (2010) Contaminant fate and transport in the Venice Lagoon: results from a multi-segment multimedia model. Ecotoxicol Environ Saf 73:222–230. doi: 10.1016/j.ecoenv.2009.11.005 CrossRefGoogle Scholar
  76. Stephens J, Maeda DN, Ngowi AV, Moshi AO, Mushy P, Mausa E (1994) Dissipation and degradation of 14C-p, p’-DDT and 14C-p,p’-DDE in Tanzanian soils under field conditions. J Environ Sci Health B 29:65–71. doi: 10.1080/03601239409372859 CrossRefGoogle Scholar
  77. Su N-Y, Ban PM, Scheffrahn RH (1999) Longevity and efficacy of pyrethroid and organophosphate termiticides in field degradation studies using miniature slabs vol 92(4):890–898. doi: 10.1093/jee/92.4.890
  78. SVS (2013) Epidemiological situation of malaria in Brazil, 2000 to 2011. Epidemiological Bulletin 44 (1). Health Surveillance Secretariat, Brazilian Ministry of Health. Accessed 21 March 2015 (in Portuguese)
  79. Tayaputch N (1988) Fate of 14C-DDT in Thailand under field and laboratory conditions. International Atomic Energy Agency (IAEA). Technical Document 476:63–68Google Scholar
  80. Torres JPM, Pfeiffer WC, Markowitz S, Pause R, Malm O, Japenga J (2002) Dichlorodiphenyltrichloroethane in soil, river sediment, and fish in the Amazon in Brazil. Environ Res 88:134–139. doi: 10.1006/enrs.2001.4312 CrossRefGoogle Scholar
  81. Torres JPM et al (2009) Persistent toxic substances in the Brazilian Amazon: contamination of man and the environment. J Braz Chem Soc 20:1175–1179CrossRefGoogle Scholar
  82. USEPA (2014) Estimation Programs Interface SuiteTM for Microsoft (R) Windows, v 4.11. United States Environmental Protection Agency, Washington, DC, USA.Google Scholar
  83. van den Berg H (2009) Global status of DDT and its alternatives for use in vector control to prevent disease. Environ Health Perspect 117:1656–1663. doi: 10.1289/ehp.0900785 CrossRefGoogle Scholar
  84. Van Dyk JC, Bouwman H, Barnhoorn IEJ, Bornman MS (2010) DDT contamination from indoor residual spraying for malaria control. Sci Total Environ 408:2745–2752. doi: 10.1016/j.scitotenv.2010.03.002 CrossRefGoogle Scholar
  85. Vieira EDR, Torres JPM, Malm O (2001) DDT environmental persistence from its use in a vector control program: a case study. Environ Res 86:174–182. doi: 10.1006/enrs.2001.4258 CrossRefGoogle Scholar
  86. Wang F et al (2007) Organochlorine pesticides in soils under different land usage in the Taihu Lake region. Chin J Environ Sci 19:584–590. doi: 10.1016/S1001 CrossRefGoogle Scholar
  87. Wania F, Breivik K, Persson NJ, McLachlan MS (2006) CoZMo-POP 2—a fugacity-based dynamic multi-compartmental mass balance model of the fate of persistent organic pollutants. Environ Model Softw 21:868–884. doi: 10.1016/j.envsoft.2005.04.003 CrossRefGoogle Scholar
  88. Whelan MJ (2013) Evaluating the fate and behaviour of cyclic volatile methyl siloxanes in two contrasting North American lakes using a multi-media model. Chemosphere 91:1566–1576. doi: 10.1016/j.chemosphere.2012.12.048 CrossRefGoogle Scholar
  89. WHO (2011) DDT in indoor residual spraying: human health aspects (Environmental Health Criteria 241). World Health Organization, SwitzerlandGoogle Scholar
  90. WHO (2012) World malaria report. World Health Organization, SwitzerlandGoogle Scholar
  91. WHO (2013) WHO recommended insecticides for indoor residual spraying for malaria vectors. World Health Organization. Accessed 15 September 2013
  92. Xia X, Hopke PK, Holsen TM, Crimmins BS (2011) Modeling toxaphene behavior in the Great Lakes. Sci Total Environ 409:792–799. doi: 10.1016/j.scitotenv.2010.10.051 CrossRefGoogle Scholar
  93. Xu B, Jianying G, Yongxi Z, Haibo L (1994) Behaviour of DDT in Chinese tropical soils. J Environ Sci Health B 29:37–46. doi: 10.1080/03601239409372856 CrossRefGoogle Scholar
  94. Yáñez L, Ortiz-Pérez D, Batres LE, Borja-Aburto VH, Dı́az-Barriga F (2002) Levels of dichlorodiphenyltrichloroethane and deltamethrin in humans and environmental samples in malarious areas of Mexico. Environ Res 88:174–181. doi: 10.1006/enrs.2002.4333 CrossRefGoogle Scholar
  95. Zayed SMAD, El‐Axab AE, Soliman SM (1994a) Dissipation of DDT in natural water under field conditions. J Environ Sci Health B 29:185–188. doi: 10.1080/03601239409372871 CrossRefGoogle Scholar
  96. Zayed SMAD, Mostafa IY, El‐Arab AE (1994b) Degradation and fate of 14C-DDT and 14C-DDE in Egyptian soil. J Environ Sci Health B 29:47–56. doi: 10.1080/03601239409372857 CrossRefGoogle Scholar
  97. Zhang G, Parker A, House A, Mai B, Li X, Kang Y, Wang Z (2002) Sedimentary records of DDT and HCH in the pearl River Delta, South China. Environ Sci Technol 36:3671–3677. doi: 10.1021/es0102888 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Annelle Mendez
    • 1
  • Carla A. Ng
    • 1
    Email author
  • João Paulo Machado Torres
    • 2
  • Wanderley Bastos
    • 3
  • Christian Bogdal
    • 1
    • 4
  • George Alexandre dos Reis
    • 2
  • Konrad Hungerbuehler
    • 1
  1. 1.Institute for Chemical and BioengineeringETH ZurichZürichSwitzerland
  2. 2.Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Department of BiologyFederal University of RondôniaPorto VelhoBrazil
  4. 4.Agroscope, Institute for Sustainability Sciences ISSZürichSwitzerland

Personalised recommendations