Environmental Science and Pollution Research

, Volume 24, Issue 13, pp 11890–11900 | Cite as

Monitoring PAHs in the petrochemical area of Tarragona County, Spain: comparing passive air samplers with lichen transplants

  • Noelia Domínguez-Morueco
  • Sofia Augusto
  • Laura Trabalón
  • Eva Pocurull
  • Francesc Borrull
  • Marta Schuhmacher
  • José L. Domingo
  • Martí Nadal
Biomonitoring of atmospheric pollution: possibilities and future challenges

Abstract

The levels of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in 8 passive air samples (PAS) and 6 lichen transplants (Ramalina fastigiata) deployed for a period of 2 months in different zones of Tarragona County (Catalonia, Spain), an area with an important number of chemical and petrochemical industries. The accumulated amount of the sum of the 16 PAHs ranged between 1363 to 7866 ng/sample in air samples. The highest concentration was found in the neighborhood of Puigdelfí (village of Perafort), in the vicinity of a big oil refinery and well under the potential influence of the petrochemical emissions. In lichen samples, the sum of the 16 PAHs ranged between 247 and 841 ng/g (dry weight), being the greatest value also observed in Puigdelfí. Data on the levels and profiles of PAHs in both passive monitoring methods were compared. A significant positive linear correlation was found between the concentrations of low molecular weight PAHs in lichens and the amounts accumulated in passive air samples (R = 0.827, P < 0.05), being especially significant the correlation of 4-ring PAHs (R = 0.941, P < 0.05). These results strongly suggest that lichens can be used to monitor gas-phase PAHs, providing data that can be quantitatively translated into equivalents for air.

Keywords

Polycyclic aromatic hydrocarbons (PAHs) Passive air sampling (PAS) Polyurethane foams (PUF) Lichens samples Biomonitoring Tarragona, Spain 

Supplementary material

11356_2015_5612_MOESM1_ESM.docx (18 kb)
ESM 1(DOCX 17 kb)

References

  1. Augusto S, Máguas C, Matos J, Pereira MJ, Branquinho C (2010) Lichens as an integrating tool for monitoring PAH atmospheric deposition: a comparison with soil, air and pine needles. Environ Pollut 158(2):483–489. doi:10.1016/j.envpol.2009.08.016 CrossRefGoogle Scholar
  2. Augusto S, Máguas C, Branquinho C (2013a) Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses—a review. Environ Pollut 180:330–338. doi:10.1016/j.envpol.2013.05.019 CrossRefGoogle Scholar
  3. Augusto S, Pereira MJ, Máguas C, Branquinho C (2013b) A step towards the use of biomonitors as estimators of atmospheric PAHs for regulatory purposes. Chemosphere 92(5):626–632. doi:10.1016/j.chemosphere.2013.03.068 CrossRefGoogle Scholar
  4. Augusto S, Sierra J, Nadal M, Schuhmacher M (2015) Tracking polycyclic aromatic hydrocarbons in lichens: it’s all about the algae. Environ Pollut. doi:10.1016/j.envpol.2015.08.013 Google Scholar
  5. Bohlin P, Jones KC, Tovalin H, Strandberg B (2008) Observations on persistent organic pollutants in indoor and outdoor air using passive polyurethane foam samplers. Atmos Environ 42(31):7234–7241. doi:10.1016/j.atmosenv.2008.07.012 CrossRefGoogle Scholar
  6. Bohlin P, Jones KC, Strandberg B (2010) Field evaluation of polyurethane foam passive air samplers to assess airborne PAHs in occupational environments. Environ Sci Technol 44(2):749–754. doi:10.1021/es902318g CrossRefGoogle Scholar
  7. Carlberg GE, Ofsad EB, Drangsholt H, Steinnes E (1983) Atmospheric deposition of organic micropollutants in Norway studied by means of moss and lichen analysis. Chemosphere 12:341–356. doi:10.1016/0045-6535(83)90109-1 CrossRefGoogle Scholar
  8. Chen Y, Feng Y, Xiong S, Liu D, Wang G, Sheng G, Fu J (2011) Polycyclic aromatic hydrocarbons in the atmosphere of Shanghai, China. Environ Monit Assess 172(1–4):235–247. doi:10.1007/s10661-010-1330-x CrossRefGoogle Scholar
  9. Cheng H, Deng Z, Chakraborty P, Liu D, Zhang R, Xu Y, Luo C, Zhang G, Li J (2013) A comparison study of atmospheric polycyclic aromatic hydrocarbons in three Indian cities using PUF disk passive air samplers. Atmos Environ 73:16–21. doi:10.1016/j.atmosenv.2013.03.001 CrossRefGoogle Scholar
  10. Choi SD, Kwon HO, Lee YS, Park EJ, Oh JY (2012) Improving the spatial resolution of atmospheric polycyclic aromatic hydrocarbons using passive air samplers in a multi-industrial city. J Hazard Mater 241–242:252–258. doi:10.1016/j.jhazmat.2012.09.039 CrossRefGoogle Scholar
  11. Delhomme O, Millet M (2012) Characterization of particulate polycyclic aromatic hydrocarbons in the east of France urban areas. Environ Sci Pollut Res 19(5):1791–1799. doi:10.1007/s11356-011-0701-3 CrossRefGoogle Scholar
  12. Domínguez-Morueco N, Vilavert L, Schuhmacher M, Domingo JL, Nadal M (2014) Passive air sampling of PAHs at local scale: preliminary results in Tarragona County, Spain. Organohalogen Compd 76:384–387Google Scholar
  13. Estellano VH, Pozo K, Harner T, Corsolini S, Focardi S (2012) Using PUF disk passive samplers to simultaneously measure air concentrations of persistent organic pollutants (POPs) across the Tuscany region, Italy. Atmos Pollut Res 3(1):88–94. doi:10.5094/APR.2012.008 CrossRefGoogle Scholar
  14. Estellano VH, Pozo K, Silibello C, Mulder MD, Efstathiou C, Tomasino MP, Furano F, Donadio I, Focardi F (2014) Characterization of urban pollution in two cities of the Puglia region in southern Italy using field measurements and air quality (AQ) model approach. Atmos Pollut Res 5:34–41. doi:10.5094/APR.2014.005 CrossRefGoogle Scholar
  15. Guidotti M, Stella D, Owczarek M, de Marco A, de Simona C (2003) Lichens as polycyclic aromatic hydrocarbons bioaccumulators used in atmospheric pollution studies. J Chromatogr A 985:185–190. doi:10.1016/S0021-9673(02)01452-8 CrossRefGoogle Scholar
  16. Guidotti M, Stella D, Dominici C, Blasi G, Owczarek M, Vitali M, Protano C (2009) Monitoring of traffic-related pollution in a province of central Italy with transplanted lichen Pseudevernia furfuracea. Bull Environ Contam Toxicol 83:852–858. doi:10.1007/s00128-009-9792-7 CrossRefGoogle Scholar
  17. Harner T, Su K, Genualdi S, Karpowicz J, Ahrens L, Mihele C, Schuster J, Charland JP, Narayan J (2013) Calibration and application of PUF disk passive air samplers for tracking polycyclic aromatic compounds (PACs). Atmos Environ 75:123–128. doi:10.1016/j.atmosenv.2013.04.012 CrossRefGoogle Scholar
  18. Jaward FM, Farrar NJ, Harner T, Sweetman AJ, Jones KC (2004) Passive air sampling of polycyclic aromatic hydrocarbons and polychlorinated naphthalenes across Europe. Environ Toxicol Chem 23:1355–1364. doi:10.1897/03-420 CrossRefGoogle Scholar
  19. Jyethi DS, Khillare PS, Sarkar S (2014) Risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in school children. Environ Sci Pollut Res 21(1):366–378. doi:10.1007/s11356-013-1912-6 CrossRefGoogle Scholar
  20. Kennedy K, Macova M, Bartkow ME, Hawker DW, Zhao B, Denison MS, Mueller JF (2010) Effect based monitoring of seasonal ambient air exposures in Australia sampled by PUF passive air samplers. Atmos Pollut Res 1:50–58. doi:10.5094/APR.2010.008 CrossRefGoogle Scholar
  21. Leung AO, Cheung KC, Wong MH (2015) Spatial distribution of polycyclic aromatic hydrocarbons in soil, sediment, and combusted residue at an e-waste processing site in southeast China. Environ Sci Pollut Res 22:8786–8801. doi:10.1007/s11356-013-1465-8 CrossRefGoogle Scholar
  22. Loppi S, Pozo K, Estellano VH, Corsolini S, Sardella G, Paoli L (2015) Accumulation of polycyclic aromatic hydrocarbons by lichen transplants: comparison with gas-phase passive air samplers. Chemosphere 134:39–43. doi:10.1016/j.chemosphere.2015.03.066 CrossRefGoogle Scholar
  23. Mari M, Schuhmacher M, Feliubadaló J, Domingo JL (2008) Air concentrations of PCDD/Fs, PCBs and PCNs using active and passive air samplers. Chemosphere 70(9):1637–1643. doi:10.1016/j.chemosphere.2007.07.076 CrossRefGoogle Scholar
  24. Nadal M, Schuhmacher M, Domingo JL (2004a) Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ Pollut 132(1):1–11. doi:10.1016/j.envpol.2004.04.003 CrossRefGoogle Scholar
  25. Nadal M, Schuhmacher M, Domingo JL (2004b) Metal pollution of soils and vegetation in an area with petrochemical industry. Sci Total Environ 321(1–3):59–69. doi:10.1016/j.scitotenv.2003.08.029 CrossRefGoogle Scholar
  26. Nadal M, Schuhmacher M, Domingo JL (2007) Levels of metals, PCBs, PCNs and PAHs in soils of a highly industrialized chemical/petrochemical area: temporal trend. Chemosphere 66:267–276. doi:10.1016/j.chemosphere.2006.05.020 CrossRefGoogle Scholar
  27. Nadal M, Mari M, Schuhmacher M, Domingo JL (2009) Multi-compartmental environmental surveillance of a petrochemical area: levels of micropollutants. Environ Int 35(2):227–235. doi:10.1016/j.envint.2008.06.001 CrossRefGoogle Scholar
  28. Nadal M, Schuhmacher M, Domingo JL (2011) Long-term environmental monitoring of persistent organic pollutants and metals in a chemical/petrochemical area: human health risks. Environ Pollut 159(7):1769–1777. doi:10.1016/j.envpol.2011.04.007 CrossRefGoogle Scholar
  29. Pozo K, Harner T, Shoeib M, Urrutia R, Barra R, Parra O, Focardi S (2004) Passive-sampler derived air concentrations of persistent organic pollutants on a north–south transect in Chile. Environ Sci Technol 38(24):6529–6537. doi:10.1021/es049065i CrossRefGoogle Scholar
  30. Pozo K, Harner T, Lee SC, Wania F, Muir DCG, Jones KC (2009) Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPS study. Environ Sci Technol 43(3):796–803. doi:10.1021/es802106a CrossRefGoogle Scholar
  31. Pozo K, Harner T, Rudolph A, Oyola G, Estellano VH, Ahumada-Rudolph R, Focardi S (2012) Survey of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of rural, urban and industrial areas of Concepción, Chile, using passive air samplers. Atmos Pollut Res 3(4):426–434. doi:10.5094/APR.2012.049 CrossRefGoogle Scholar
  32. Protano C, Guidotti M, Owczarek M, Fantozzi L, Blasi G, Vitali M (2014) Polycyclic aromatic hydrocarbons and metals in transplanted lichen (Pseudoevernia furfuracea) at sites adjacent to a solid-waste landfill in central Italy. Arch Environ Contam Toxicol 471–481. doi:10.1007/s00244-013-9965-6
  33. Ramirez N, Cuadras A, Rovira E, Marcé RM, Borrull F (2011) Risk assessment related to atmospheric polycyclic aromatic hydrocarbons in gas and particle phases near industrial sites. Environ Health Perspect 119:1110–1116. doi:10.1289/ehp.1002855
  34. Schuhmacher M, Nadal M, Domingo JL (2004) Levels of PCDD/Fs, PCBs, and PCNs in soils and vegetation in an area with chemical and petrochemical industries. Environ Sci Technol 38(7):1960–1969. doi:10.1021/es034787f CrossRefGoogle Scholar
  35. Shoeib M, Harner T (2002) Characterization and comparison of three passive air samplers for persistent organic pollutants. Environ Sci Technol 36:4142–4151. doi:10.1021/es020635t CrossRefGoogle Scholar
  36. Studabaker WB, Krupa S, Jayanty RKM, Raymer JH (2012) Measurement of polynuclear aromatic hydrocarbons (PAHs) in epiphytic lichens for receptor modelling in Athabasca Oil Sands Region (AOSR): a pilot study. In: Percy KE (ed) Dev Environm Sci vol. 11, Amsterdam, The Netherlands pp. 391–425Google Scholar
  37. Vilavert L, Nadal M, Rovira J, Schuhmacher M, Domingo JL (2013) Air passive sampling for the screening of inhalation risks of POPs near an incineration plant. Hum Ecol Risk Assess 19(3):620–634. doi:10.1080/10807039.2012.701990 CrossRefGoogle Scholar
  38. Vilavert L, Nadal M, Schuhmacher M, Domingo JL (2014) Seasonal surveillance of airborne PCDD/Fs, PCBs and PCNs using passive samplers to assess human health risks. Sci Total Environ 466–467:733–740. doi:10.1016/j.scitotenv.2013.07.124 CrossRefGoogle Scholar
  39. Wang XY, Li QB, Luo YM, Ding Q, Xi LM, Ma JM, Li I, Liu P, Cheng CL (2010) Characteristics and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. Environ Monit Assess 165(1–4):295–305. doi:10.1007/s10661-009-0946-1 CrossRefGoogle Scholar
  40. Xia Z, Duan X, Tao S, Qiu W, Liu D, Wang Y, Wei S, Wang B, Jiang Q, Lu B, Song Y, Hu X (2013) Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Environ Pollut 173:150–156. doi:10.1016/j.envpol.2012.10.009 CrossRefGoogle Scholar
  41. Zabiegała B, Kot-Wasik A, Urbanowicz M, Namieśnik J (2010) Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring. Anal Bioanal Chem 396(1):273–296. doi:10.1007/s00216-009-3244-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Noelia Domínguez-Morueco
    • 1
    • 2
  • Sofia Augusto
    • 1
    • 3
  • Laura Trabalón
    • 4
  • Eva Pocurull
    • 4
  • Francesc Borrull
    • 4
  • Marta Schuhmacher
    • 1
    • 2
  • José L. Domingo
    • 2
  • Martí Nadal
    • 2
  1. 1.Environmental Engineering Laboratory, Departament d’Enginyeria QuimicaUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Laboratory of Toxicology and Environmental Health, School of Medicine, IISPVUniversitat Rovira i VirgiliReusSpain
  3. 3.Centre for Ecology, Evolution and Environmental Changes (cE3c)Faculdade de Ciências da Universidade de Lisboa, FCULLisboaPortugal
  4. 4.Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations