Urban riverine environment is a source of multidrug-resistant and ESBL-producing clinically important Acinetobacter spp.

Abstract

Some Acinetobacter species have emerged as very important opportunistic pathogens in humans. We investigated Acinetobacter spp. from the polluted urban riverine environment in Croatia in regard to species affiliation, antibiotic resistance pattern, and resistance mechanisms. Considerable number of isolates produced acquired extended-spectrum β-lactamase(s) (ESBLs), CTX-M-15 solely or with TEM-116. By Southern blot hybridization, bla TEM-116 was identified on plasmids ca. 10, 3, and 1.2 kb in Acinetobacter junii, A. gandensis, and A. johnsonii. The bla TEM-116-carrying plasmid in A. gandensis was successfully transferred by conjugation to azide-resistant Escherichia coli J53. A. radioresistens isolate also carried an intrinsic carbapenemase gene bla OXA-133 with ISAba1 insertion sequence present upstream to promote its expression. Majority of ESBL-producing isolates harbored integrases intI1 and/or intI2 and the sulfamethoxazole resistance gene sul1. Almost all isolates had overexpressed resistance-nodulation-cell division (RND) efflux system, indicating that this mechanism may have contributed to multidrug resistance phenotypes. This is the first report of environmental CTX-M-15-producing Acinetobacter spp. and the first identification of CTX-M-15 in A. johnsonii, A. junii, A. calcoaceticus, A. gandensis, A. haemolyticus, and A. radioresistens worldwide. We identified, also for the first time, the environmental Acinetobacter-producing TEM ESBLs, highlighting the potential risk for human health, and the role of these bacteria in maintenance and dissemination of clinically important antibiotic resistance genes in community through riverine environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington DC

    Google Scholar 

  2. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2012) GenBank. Nucleic Acids Res 41(Database issue):D36–42. doi:10.1093/nar/gks1195, http://www.ncbi.nlm.nih.gov/. Accessed April 2015

    Google Scholar 

  3. Bush K, Jacoby GA (2010) Updated functional classification of β-lactamases. Antimicrob Agents Chemother 54:969–976. doi:10.1128/AAC.01009-09

    Article  CAS  Google Scholar 

  4. Cantón R, Coque TM (2006) The CTX-M β-lactamase pandemic. Curr Opin Microbiol 9:466–475. doi:10.1016/j.mib.2006.08.011

    Article  Google Scholar 

  5. Castellanos Martinez E, Telenti Asensio M, Rodriguez Blanco VM, Rodriguez Suarez ML, Morena Torrico A, Cortina Llosa A (1995) Infective endocarditis of an interventricular patch caused by Acinetobacter haemolyticus. Infection 23:243–245

    Article  CAS  Google Scholar 

  6. CLSI (2012) Performance standards for antimicrobial susceptibility testing. CLSI M100-S22. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  7. Coyne S, Courvalin P, Périchon B (2011) Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 55:947–953. doi:10.1128/AAC.01388-10

    Article  CAS  Google Scholar 

  8. Dijkshoorn L, Nemec A, Seifert H (2007) An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 5:939–951. doi:10.1038/nrmicro1789

    Article  CAS  Google Scholar 

  9. Ellington MJ, Kistler J, Livermore DM, Woodford N (2007) Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother 59:321–322. doi:10.1093/jac/dkl481

    Article  CAS  Google Scholar 

  10. Euzéby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592, List of Prokaryotic Names with Standing in Nomenclature (LPSN). http://www.bacterio.cict.fr/a/acinetobacter.html/. Accessed April 2015

    Article  Google Scholar 

  11. Evans BA, Amyes SGB (2014) OXA β-lactamases. Clin Microbiol Rev 27:241. doi:10.1128/CMR.00117-13

    Article  Google Scholar 

  12. Evans BA, Hamouda A, Amyes SG (2013) The rise of carbapenem resistant Acinetobacter baumannii. Curr Pharm Des 19:223–238. doi:10.2174/138161213804070285

    Article  CAS  Google Scholar 

  13. Figueiredo S, Bonnin RA, Poirel L, Duranteau J, Nordmann P (2012) Identification of the naturally occurring genes encoding carbapenem hydrolysing oxacillinases from Acinetobacter haemolyticus, Acinetobacter johnsonii, and Acinetobacter calcoaceticus. Clin Microbiol Infect 18:907–913. doi:10.1111/j.1469-0691.2011.03708.x

    Article  CAS  Google Scholar 

  14. Goldstein FW, Labigne-Roussel A, Gerbaud G, Carlier C, Collatz E, Courvalin P (1983) Transferable plasmid-mediated antibiotic resistance in Acinetobacter. Plasmid 10:138–147. doi:10.1016/0147-619X(83)90066-5

    Article  CAS  Google Scholar 

  15. Grotiuz G, Sirok A, Gadea P, Varela G, Schelotto F (2006) Shiga toxin 2-producing Acinetobacter haemolyticus associated with a case of bloody diarrhea. J Clin Microbiol 44:3838–3841. doi:10.1128/JCM.00407-06

    Article  CAS  Google Scholar 

  16. Guardabassi L, Dalsgaard A, Olsen JE (1999) Phenotypic characterisation and antibiotic resistance of Acinetobacter spp. isolated from aquatic sources. J Appl Microbiol 87:659–667

    Article  CAS  Google Scholar 

  17. Guardabassi L, Dalsgaard A, Raffatellu M, Olsen JE (2000) Increase in the prevalence of oxolinic acid resistant Acinetobacter spp. observed in a stream receiving the effluent from a freshwater trout farm following the treatment with oxolinic acid-medicated feed. Aquaculture 188:205–218. doi:10.1016/S0044-8486(00)00340-9

    Article  CAS  Google Scholar 

  18. Hrenović J, Durn G, Goić-Barišić I, Kovačić A (2014) Occurrence of an environmental Acinetobacter baumannii strain similar to a clinical isolate in paleosol from Croatia. Appl Environ Microbiol 80:2860–2866. doi:10.1128/AEM.00312-14

    Article  Google Scholar 

  19. Hu L-F, Chang X, Ye Y, Wang Z-X, Shao Y-B, Shi W, Li X, Li J-B (2011) Stenotrophomonas maltophilia resistance to trimethoprim/sulfamethoxazole mediated by acquisition of sul and dfrA genes in a plasmid mediated class 1 integron. Int J Antimicrob Agents 37:230–234. doi:10.1016/j.ijantimicag.2010.10.025

    Article  CAS  Google Scholar 

  20. ISO 7899–2 (2000) International Organization for Standardization. Water quality—detection and enumeration of intestinal enterococci—part 2: membrane filtration method, 2nd edn. Switzerland, pp 7

  21. ISO 9308–1 (2000) International Organization for Standardization. Water quality—detection and enumeration of Escherichia coli and coliform bacteria—part 1: membrane filtration method, 1st edn. Switzerland, pp 24

  22. Lahey Clinic (2015). ß-Lactamase classification and amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant enzymes. Lahey Clinic Foundation, Inc. MA, USA. http://www.lahey.org/Studies/. Accessed April 2015

  23. Maravić A, Skočibušić M, Šamanić I, Puizina J (2012a) Antibiotic susceptibility profiles and first report of TEM extended-spectrum β-lactamase in Pseudomonas fluorescens from coastal waters of the Kaštela Bay, Croatia. World J Microbiol Biotechnol 28:2039–2045. doi:10.1007/s11274-012-1006-5

    Article  Google Scholar 

  24. Maravić A, Skočibušić M, Šprung M, Šamanić I, Puizina J, Pavela-Vrančić M (2012b) Occurrence and antibiotic susceptibility profiles of Burkholderia cepacia complex in coastal marine environment. Int J Environ Health Res 22:531–542. doi:10.1080/09603123.2012.667797

    Article  Google Scholar 

  25. Maravić A, Skočibušić M, Cvjetan S, Šamanić I, Fredotović Ž, Puizina J (2015) Prevalence and diversity of extended-spectrum-β-lactamase-producing enterobacteriaceae from marine beach waters. Mar Pollut Bull 90:60–67. doi:10.1016/j.marpolbul.2014.11.021

    Article  Google Scholar 

  26. Martins M, Viveiros M, Couto I, Costa SS, PachecoT FS, Pagès JM, Amaral L (2011) Identification of efflux pump-mediated multidrug-resistant bacteria by the ethidium bromide-agar cartwheel method. In Vivo 25:171–178

    CAS  Google Scholar 

  27. Mendes RE, Bell JM, Turnidge JD, Castanheira M, Deshpande LM, Jones RN (2009) Codetection of bla OXA-23-like gene (bla OXA-133) and bla OXA-58 in Acinetobacter radioresistens: report from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 53:843–844. doi:10.1128/AAC.00999-08

    Article  CAS  Google Scholar 

  28. Naiemi NA, Duim B, Savelkoul PH, Spanjaard L, deJonge E, Bart A, Vandenbroucke-Grauls CM, de Jong MD (2005) Widespread transfer of resistance genes between bacterial species in an intensive care unit: implications for hospital epidemiology. J Clin Microbiol 43:4862–4864. doi:10.1128/JCM.43.9.4862-4864.2005

    Article  Google Scholar 

  29. Oh JY, Jeong YW, Joo HS, Chong WS, Lee JC, Tamang MD, Lee WB, Park JC (2009) Distribution of genomic species and antimicrobial susceptibility in Acinetobacters isolated from Gangjin Bay, Korea. J Bacteriol Virol 39:247–256. doi:10.4167/jbv.2009.39.4.247

    Article  CAS  Google Scholar 

  30. Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582. doi:10.1128/CMR.00058-07

    Article  CAS  Google Scholar 

  31. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA (2007) Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 51:3471–3484. doi:10.1128/AAC.01464-06

    Article  CAS  Google Scholar 

  32. Périchon B, Goussard S, Walewski V, Krizova L, Cerqueira G, Murphy C, Feldgarden M, Wortman J, Clermont D, Nemec A, Courvalin P (2014) Identification of 50 class D beta-lactamases and 65 Acinetobacter derived cephalosporinases in Acinetobacter spp. Antimicrob Agents Chemother 58:936–949. doi:10.1128/AAC.01261-13

    Article  Google Scholar 

  33. Ploy MC, Denis F, Courvalin P, Lambert T (2000) Molecular characterization of integrons in Acinetobacter baumannii: description of a hybrid class 2 integron. Antimicrob Agents Chemother 44:2684–2688. doi:10.1128/AAC.44.10.2684-2688.2000

    Article  CAS  Google Scholar 

  34. Poirel L, Figueiredo S, Cattoir V, Carattoli A, Nordmann P (2008) Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp. Antimicrob Agents Chemother 52:1252–1256. doi:10.1128/AAC.00861-09

    Article  CAS  Google Scholar 

  35. Poirel L, Walsh TR, Cuvillier V, Nordmann P (2011) Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70:119–123. doi:10.1016/j.diagmicrobio.2010.12.002

    Article  CAS  Google Scholar 

  36. Poirel L, Bonnin RA, Nordmann P (2012) Genetic support and diversity of acquired extended-spectrum beta-lactamases in gram-negative rods. Infect Genet Evol 12:883–893. doi:10.1016/j.meegid.2012.02.008

    Article  CAS  Google Scholar 

  37. Potron A, Munoz-Price LS, Nordmann P, Cleary T, Poirel L (2011) Genetic features of CTX-M-15-producing Acinetobacter baumannii from Haiti. Antimicrob Agents Chemother 55:5946–5948. doi:10.1128/AAC.05124-11

    Article  CAS  Google Scholar 

  38. Quinteira S, Grosso F, Ramos H, Peixe L (2007) Molecular epidemiology of imipenem resistant Acinetobacter haemolyticus and Acinetobacter baumannii isolates carrying plasmid-mediated OXA-40 from a Portuguese hospital. Antimicrob Agents Chemother 51:3465–3466. doi:10.1128/AAC.00267-07

    Article  CAS  Google Scholar 

  39. Shakil S, Khan AU (2010) Detection of CTX-M-15-producing and carbapenem-resistant Acinetobacter baumannii strains from urine from an Indian hospital. J Chemother 22:324–327. doi:10.1179/joc.2010.22.5.324

    Article  CAS  Google Scholar 

  40. Smet A, Cools P, Krizova L, Maixnerova M, Sedo O, Haesebrouck F, Kempf M, Nemec A, Vaneechoutte M (2014) Acinetobacter gandensis sp. nov. isolated from horse and cattle. Int J Syst Evol Microbiol 64:4007–4015. doi:10.1099/ijs.0.068791-0

    Article  Google Scholar 

  41. Song JS, Jeon JH, Lee JH, Jeong SH, Jeong BC, Kim SJ, Lee JH, Lee SH (2005) Molecular characterization of TEM-type beta-lactamases identified in cold-seep sediments of Edison seamount (south of Lihir Island, Papua New Guinea). J Microbiol 43:172–178

    CAS  Google Scholar 

  42. Štambuk-Giljanović N (2005) The quality of water resources in Dalmatia. Environ Monit Assess 104:235–267. doi:10.1007/s10661-005-1614-8

    Article  Google Scholar 

  43. Sun Y, Liu Q, Chen S, Song Y, Liu J et al (2014) Characterization and plasmid elimination of NDM-1-producing Acinetobacter calcoaceticus from China. PLoS ONE 9(9):e106555. doi:10.1371/journal.pone.0106555

    Article  Google Scholar 

  44. Tacão M, Correia A, Henriques I (2012) Resistance to broad-spectrum antibiotics in aquatic systems: anthropogenic activities modulate the dissemination of bla CTX-M-like genes. Appl Environ Microbiol 78:4134–4140. doi:10.1128/AEM.00359-12

    Article  Google Scholar 

  45. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  Google Scholar 

  46. Towner KJ (2009) Acinetobacter: an old friend, but a new enemy. J Hosp Infect 73:355–363. doi:10.1016/j.jhin.2009.03.032

    Article  CAS  Google Scholar 

  47. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, Pitt TL (2006) The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 258:72–77. doi:10.1111/j.1574-6968.2006.00195.x

    Article  CAS  Google Scholar 

  48. Turton JF, Shah J, Ozongwu C, Pike R (2010) Incidence of Acinetobacter species other than A. baumannii among clinical isolates of Acinetobacter: evidence for emerging species. J Clin Microbiol 48:1445–1449. doi:10.1128/JCM.02467-09

    Article  Google Scholar 

  49. Vranić-Ladavac M, Bedenić B, Minandri F, Ištok M, Bošnjak Z, Frančula-Zaninović S, Ladavac VP (2014) Carbapenem resistance and acquired class D beta-lactamases in Acinetobacter baumannii from Croatia 2009–2010. Eur J Clin Microbiol Infect Dis 33:471–478. doi:10.1007/s10096-013-1991-9

    Article  Google Scholar 

  50. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SGB, Livermore DM (2006) Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 27:351–353. doi:10.1016/j.ijantimicag.2006.01.004

    Article  CAS  Google Scholar 

  51. Xin F, Cai D, Sun Y, Guo D, Wu Z, Jiang D (2014) Exploring the diversity of Acinetobacter populations in river water with genus-specific primers and probes. J Gen Appl Microbiol 60:51–58. doi:10.2323/jgam.60.51

    Article  CAS  Google Scholar 

  52. Zhang Y, Marrs CF, Simon C, Xi C (2009) Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp. Sci Total Environ 407:3702–3706. doi:10.1016/j.scitotenv.2009.02.013

    Article  CAS  Google Scholar 

  53. Zhao WH, Hu ZQ (2012) Acinetobacter: a potential reservoir and dispenser for ß-lactamases. Crit Rev Microbiol 38:30–51. doi:10.3109/1040841X.2011.621064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the research funds of Ministry of Science, Education and Sports of the Republic of Croatia to A. Maravić.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana Maravić.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maravić, A., Skočibušić, M., Fredotović, Ž. et al. Urban riverine environment is a source of multidrug-resistant and ESBL-producing clinically important Acinetobacter spp.. Environ Sci Pollut Res 23, 3525–3535 (2016). https://doi.org/10.1007/s11356-015-5586-0

Download citation

Keywords

  • Acinetobacter
  • Beta lactamase
  • CTX-M-15
  • ESBL
  • River environment
  • TEM-116