Pushing the limits of nickel detection to nanomolar range using a set of engineered bioluminescent Escherichia coli

Abstract

The detection of nickel in water is of great importance due to its harmfulness for living organism. A way to detect Ni is the use of whole-cell biosensors. The aim of the present work was to build a light-emitting bacterial biosensor for the detection of Ni with high specificity and low detection limit properties. For that purpose, the regulatory circuit implemented relied on the RcnR Ni/Co metallo-regulator and its rcnA natural target promoter fused to the lux reporter genes. To convert RcnR to specifically detect Ni, several mutations were tested and the C35A retained. Deleting the Ni efflux pump rcnA and introducing genes encoding several Ni-uptake systems lowered the detection thresholds. When these constructs were assayed in several Escherichia coli strains, it appeared that the detection thresholds were highly variable. The TD2158 wild-type E. coli gave rise to a biosensor ten times more active and sensitive than its W3110 E. coli K12 equivalent. This biosensor was able to confidently detect Ni concentrations as little as 80 nM (4.7 μg l−1), which makes its use compatible with the norms governing the drinking water quality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bereza-Malcolm LT, Mann G, Franks AE (2014) Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. ACS Synth Biol

  2. Blaha D, Arous S, Bleriot C, Dorel C, Mandrand-Berthelot MA, Rodrigue A (2011) The Escherichia coli metallo-regulator RcnR represses rcnA and rcnR transcription through binding on a shared operator site: insights into regulatory specificity towards nickel and cobalt. Biochimie 93:434–439

    CAS  Article  Google Scholar 

  3. Bleriot C, Effantin G, Lagarde F, Mandrand-Berthelot MA, Rodrigue A (2011) RcnB is a periplasmic protein essential for maintaining intracellular Ni and Co concentrations in Escherichia coli. J Bacteriol 193:3785–3793

    CAS  Article  Google Scholar 

  4. Brutesco C et al. (2015) Influence of the genetic background and reporter in optimal light response of bacterial biosensors. Environ Sci Pollut Res Int. (in this issue)

  5. Condee CW, Summers AO (1992) A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. J Bacteriol 174:8094–8101

    CAS  Article  Google Scholar 

  6. Contreras M, Thiberge JM, Mandrand-Berthelot MA, Labigne A (2003) Characterization of the roles of NikR, a nickel-responsive pleiotropic autoregulator of Helicobacter pylori. Mol Microbiol 49:947–963

    CAS  Article  Google Scholar 

  7. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    CAS  Article  Google Scholar 

  8. De Pina K, Desjardin V, Mandrand-Berthelot MA, Giordano G, Wu LF (1999) Isolation and characterization of the nikR gene encoding a nickel-responsive regulator in Escherichia coli. J Bacteriol 181:670–674

    Google Scholar 

  9. Dhillon TS, Poon AP, Chan D, Clark AJ (1998) General transducing phages like Salmonella phage P22 isolated using a smooth strain of Escherichia coli as host. FEMS Microbiol Lett 161:129–133

    CAS  Article  Google Scholar 

  10. Duprey A et al (2014) “NiCo Buster”: engineering E. coli for fast and efficient capture of cobalt and nickel. J Biol Eng 8:19

    Article  Google Scholar 

  11. Eitinger T, Mandrand-Berthelot MA (2000) Nickel transport systems in microorganisms. Arch Microbiol 173:1–9

    CAS  Article  Google Scholar 

  12. Eitinger T, Rodionov DA, Grote M, Schneider E (2010) Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 35:3–67

    Article  Google Scholar 

  13. European Drinking Water Directive (1998) Council Directive 98/83/EC. http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31998L0083

  14. Grass G, Fricke B, Nies DH (2005) Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations. Biometals 18:437–448

    CAS  Article  Google Scholar 

  15. Iwig JS, Rowe JL, Chivers PT (2006) Nickel homeostasis in Escherichia coli—the rcnR–rcnA efflux pathway and its linkage to NikR function. Mol Microbiol 62:252–262

    CAS  Article  Google Scholar 

  16. Iwig JS, Leitch S, Herbst RW, Maroney MJ, Chivers PT (2008) Ni(II) and Co(II) sensing by Escherichia coli RcnR. J Am Chem Soc 130:7592–7606

    Article  Google Scholar 

  17. Jubier-Maurin V, Rodrigue A, Ouahrani-Bettache S, Layssac M, Mandrand-Berthelot MA, Kohler S, Liautard JP (2001) Identification of the nik gene cluster of Brucella suis: regulation and contribution to urease activity. J Bacteriol 183:426–434

    CAS  Article  Google Scholar 

  18. Link AJ, Phillips D, Church GM (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179:6228–6237

    CAS  Article  Google Scholar 

  19. Liu T et al (2007) CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3:60–68

    CAS  Article  Google Scholar 

  20. Lopez-Maury L, Garcia-Dominguez M, Florencio FJ, Reyes JC (2002) A two-component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp. PCC 6803. Mol Microbiol 43:247–256

    CAS  Article  Google Scholar 

  21. Ma Z, Jacobsen FE, Giedroc DP (2009) Coordination chemistry of bacterial metal transport and sensing. Chem Rev 109:4644–4681

    CAS  Article  Google Scholar 

  22. Miller JH (1992) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  23. Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DG (2014) BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res 42:D737–D743

    CAS  Article  Google Scholar 

  24. Peca L, Kos PB, Mate Z, Farsang A, Vass I (2008) Construction of bioluminescent cyanobacterial reporter strains for detection of nickel, cobalt and zinc. FEMS Microbiol Lett 289:258–264

    CAS  Article  Google Scholar 

  25. Prévéral S, Brutesco C, Descamps E, Escoffier C, Ginet N, Pignol D, Garcia D. (2015) A bioluminescent arsenite biosensor designed for inline water analyzer. Environ Sci Pollut Res Int. (in this issue)

  26. Rodrigue A, Effantin G, Mandrand-Berthelot MA (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187:2912–2916

    CAS  Article  Google Scholar 

  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  28. Sebbane F, Mandrand-Berthelot MA, Simonet M (2002) Genes encoding specific nickel transport systems flank the chromosomal urease locus of pathogenic yersiniae. J Bacteriol 184:5706–5713

    CAS  Article  Google Scholar 

  29. Tibazarwa C et al (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26

    CAS  Article  Google Scholar 

  30. van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522

    Article  Google Scholar 

  31. Winson MK et al (1998) Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163:193–202

    CAS  Article  Google Scholar 

  32. World Health Organization (2011) Guidelines for drinking-water quality. http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/

  33. Wu LF, Navarro C, Mandrand-Berthelot MA (1991) The hydC region contains a multi-cistronic operon (nik) involved in nickel transport in Escherichia coli. Gene 107:37–42

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Agency ANR Ecotech, COMBITOX.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Agnès Rodrigue.

Additional information

Julien Cayron and Elsa Prudent contributed equally to this work.

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 422 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cayron, J., Prudent, E., Escoffier, C. et al. Pushing the limits of nickel detection to nanomolar range using a set of engineered bioluminescent Escherichia coli . Environ Sci Pollut Res 24, 4–14 (2017). https://doi.org/10.1007/s11356-015-5580-6

Download citation

Keywords

  • Biosensor
  • Whole bacteria
  • Bio-luminescence
  • Metal
  • Water control