Skip to main content
Log in

Bioavailability and mobility of organic contaminants in soil: new three-step ecotoxicological evaluation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A novel approach was developed for rapid assessment of bioavailability and potential mobility of contaminants in soil. The response of the same test organism to the organic extract, water extract and solid phase of soil was recorded and compared. This approach was designed to give an initial estimate of the total organic toxicity (response to organic extractable fraction), as well as the mobile (response to water extract) and bioavailable fraction (response to solid phase) of soil samples. Eighteen soil samples with different levels of pollution and content of organic carbon were selected to validate the novel three-step ecotoxicological evaluation approach. All samples were chemically analysed for priority contaminants, including aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane (HCH) and dichlordiphenyltrichloroethane (DDT). The ecotoxicological evaluation involved determination of toxicity of the organic, mobile and bioavailable fractions of soil to the test organism, bacterium Bacillus cereus. We found a good correlation between the chemical analysis and the toxicity of organic extract. The low toxicity of water extracts indicated low water solubility, and thus, low potential mobility of toxic contaminants present in the soil samples. The toxicity of the bioavailable fraction was significantly greater than the toxicity of water-soluble (mobile) fraction of the contaminants as deduced from comparing untreated samples and water extracts. The bioavailability of the contaminants decreased with increasing concentrations of organic carbon in evaluated soil samples. In conclusion, the three-step ecotoxicological evaluation utilised in this study can give a quick insight into soil contamination in context with bioavailability and mobility of the contaminants present. This information can be useful for hazard identification and risk assessment of soil-associated contaminants.

New three-step ecotoxicological evaluation by using the same organism

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahlf W (2006) Optimalisation of the solid-contact test with Arthrobacter globiformis. J Soils Sediments 6(4):201–207

    Article  CAS  Google Scholar 

  • Anderson BS, Hunt JW, Phillips BM, Nicely PA, De Vlaming V, Connor V, Richard N, Tjeerdema RS (2003) Integrated assessment of the impacts of the agricultural drainwater in the Salinas River (California, USA). Environ Pollut 124:523–532

    Article  CAS  Google Scholar 

  • Ardestani MM, van Gestel CAM (2013) Using a toxicokinetics approach to explain the effect of soil pH on cadmium bioavailability to Folsomia candida. Environ Pollut 180:122–130

    Article  CAS  Google Scholar 

  • Blaise C, Férard JF (2005) Small-scale freshwater toxicity investigations: volume 2—hazard assessment schemes. Springer, Netherlands, p 422

    Book  Google Scholar 

  • Brouwer H, Murphy T, Mc Ardle L (1990) A sediment-contact bioassay with Photobacterium phosphoreum. Environ Toxicol Chem 9(11):1353–1358

    Article  CAS  Google Scholar 

  • Cachada A, Pereira R, Ferreira da Silva E, Duarte DA (2014) The prediction of PAHs bioavailability in soils using chemical methods: state of the art and future challenges. Sci Total Environ 472:463–480

    Article  CAS  Google Scholar 

  • Chen Y, Wang CX, Wang ZJ (2005) Residues and source identification of persistent organic pollutants in farmland soils irrigated by effluents from biological treatment plants. Environ Int 31:778–783

    Article  CAS  Google Scholar 

  • Christman RF, Pfaender FK (2006) Molecular implications of hydrophobic organic partitioning theory. Acta Hydrochim Hydrobiol 34(4):367–374

    Article  CAS  Google Scholar 

  • Cupr P, Bartos T, Sanka M, Klanova J, Mikes O, Holoubek I (2010) Soil burdens of persistent organic pollutants—their levels, fate and risks. Part III. Quantification of the soil burdens and related health risks in the Czech Republic. Sci Total Environ 408:486–494

    Article  CAS  Google Scholar 

  • Day KE, Dutka BJ, Kwan KK, Batista N, Reynoldson TB, Metcalfe-Smith JL (1995) Correlations between solid-phase microbial scorning assays, whole-sediment toxicity tests with macroinvertebrates and in situ benthic community structure. J Great Lakes Res 21(2):192–206

    Article  CAS  Google Scholar 

  • Dutka BJ, Liu DL, Jurkovic A, McInnis R (1993) A comparison of four simple water extraction–concentration procedures to be used with battery of bioassays tests approach. Environ Toxicol Water Q 8:397–407

    Article  CAS  Google Scholar 

  • Dutka BJ, Marsalek J, Jurkovic A, McInnis R, Kwan KK (1994) A seasonal ecotoxicological study of stormwater ponds. Z Angew Zool 80:364–381

    Google Scholar 

  • Feiler U, Kirchesch I, Heininger P (2004) A new plant-based bioassay for aquatic sediments. J Soils Sediments 4(4):261–266

    Article  Google Scholar 

  • Feiler U, Höss S, Ahlf W, Gilberg D, Hammers-Wirtz M, Hollert H et al (2013) Sediment contact tests as a tool for the assessment of sediment quality in German waters. Environ Toxicol Chem 32(1):144–155

    Article  CAS  Google Scholar 

  • Hayat, M.T., Xu, J., Ding, N., Mahmood, T., 2010. Dynamic behaviour of persistent organic pollutants in soil and their interaction with organic matter. Mol. Env. Soil Sciences at the Interfaces in the Earth’s Critical Zone. Conference Paper. September 2009.

  • Heinlaan M, Kahru A, Kasemets K, Kurvet I, Waterlot C, Sepp K et al (2007) Rapid screening for soil ecotoxicity with a battery of luminescent bacteria tests. Altern Lab Anim 35(1):101–110

    CAS  Google Scholar 

  • Heise S, Ahlf W (2005) A new microbial contact assay for marine sediments. J Soils Sediments 5(1):9–15

    Article  CAS  Google Scholar 

  • Hollert H, Keiter S, König N, Rudolf M, Braunbeck T (2003) A new sediment contact assay to assess particle-bound pollutants using Zebrafish (Danio rerio) embryos. J Soils Sediments 3(3):197–207

    Article  Google Scholar 

  • Holoubek I, Dusek L, Sanka M, Hofman J, Cupr P, Jarkovsky J et al (2009) Soil burdens of persistent organic pollutants—their levels, fate and risk. Part I. Variation of concentration ranges according to different soil uses and locations. Environ Pollut 157(12):3207–3217

    Article  CAS  Google Scholar 

  • Höss S, Ahlf W, Fahnenstich C, Gilberg D, Hollert H, Melbye K et al (2010) Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination—determination of toxicity thresholds. Environ Pollut 158(9):2999–3010

    Article  CAS  Google Scholar 

  • Hunt JW, Anderson BS, Phillips BM, Necely PN, Tjeerdema RS, Puckett HM, Stephenson M, Worcester K, De Vlaming V (2003) Ambient toxicity due to chlorpyrifos and diazinon in a central California coastal watershed. Environ Monit Assess 82:83–112

    Article  CAS  Google Scholar 

  • ISO 10 318–6 (1993) Soil quality—sampling—part 6: guidance on the collection, handling and storage of soil for the assessment of aerobic microbial processes in the laboratory

  • ISO 10 390 (1994) Soil quality—determination of pH

  • ISO 11 261 (1995) Soil quality—determination of total nitrogen-modified Kjeldahl method

  • ISO 14 235 (1998) Soil quality—determination of organic carbon by sulfochronic oxidation

  • Ivask A, François M, Kahru A, Dubourguier HC, Virta M, Douay F (2004) Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 55(2):147–156

    Article  CAS  Google Scholar 

  • Junghans M, Backhaus T, Faust M, Scholze M, Grimme LH (2006) Application and validation of approaches for predictive hazard assessment of realistic pesticide mixtures. Aquat Toxicol 76(2):93–110

    Article  CAS  Google Scholar 

  • Kołtowski M, Oleszczuk P (2015) Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment. Ecol Eng 75:79–85

    Article  Google Scholar 

  • Kwan KK (1993) Direct toxicity assessment of solid phase samples using the Toxi-Chromotest Kit. Environ Toxicol Water Qual 8(2):223–230

    Article  CAS  Google Scholar 

  • Kwan KK, Dutka BJ (1992) Evaluation of Toxi-Chromotest direct sediment toxicity testing procedure and Microtox® solid-phase testing procedure. Bull Environ Contam Toxicol 49:656–662

    Article  CAS  Google Scholar 

  • Kwan KK, Dutka BJ (1995) Comparative assessment of two solid-phase toxicity bioassays: the direct sediment toxicity testing procedure (DSTTP) and the Microtox® solid-phase test (SPT). Bull Environ Contam Toxicol 55:338–346

    Article  CAS  Google Scholar 

  • Liu D (1989) A rapid and simple biochemical test for direct determination of chemical toxicity. Tox Assess 4(3):399–404

    Article  CAS  Google Scholar 

  • Loibner A, Jensen J, ter Laak T, Celis R, Hartnik T (2006) Sorption and ageing of soil contamination. Ecological risk assessment of contaminated land—decision support for site specific investigations. RIVM report number 711701047

  • Ma XY, Wang XC, Ngo HH, Guo W, Wu MN, Wang N (2014) Bioassay based luminescent bacteria: interferences, improvements, and applications. Sci Total Environ 15:1–11

    Article  CAS  Google Scholar 

  • Meddings JB, Scott RB, Fick GH (1989) Analysis and comparison of sigmoidal curves: application to dose–response data. Am J Physiol 257:G982–G989

    CAS  Google Scholar 

  • Mouchet F, Gauthier L, Mailhes C, Jourdain MJ, Ferrier V, Triffault G, Devaux A (2006) Biomonitoring of the genotoxic potential of aqueous extracts of soils and bottom ash resulting from municipal solid waste incineration, using the comet and micronucleus tests on amphibian (Xenopus laevis) larvae and bacterial assays (Mutatox® and Ames tests). Sci Total Environ 355:232–246

    Article  CAS  Google Scholar 

  • Neumann-Hensel H, Melbye K (2006) Optimisation of the solid-contact test with Artbrobacter globiformis. J Soils Sediments 6(4):201–207

    Article  CAS  Google Scholar 

  • Newman MC (1995) Quantitative methods in aquatic ecotoxicology. CRC/Lewis Publishers, Boca Raton, 426

    Google Scholar 

  • Olajire AA, Altenburger R, Küster E, Brack W (2005) Chemical and ecotoxicological assessment of polycyclic aromatic hydrocarbon-contaminated sediments of the Niger Delta, Southern Nigeria. Sci Total Environ 340(1–3):123–136

    Article  CAS  Google Scholar 

  • Phipps GL, Ankley GT, Benoit DA, Mattson VR (1993) Use of the aquatic oligochaete Lumbriculus variegatus for assessing the toxicity and bioaccumulation of sediment-associated contaminants. Environ Toxicol Chem 12(2):269–279

    Article  CAS  Google Scholar 

  • Pignatello JJ (1999) The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Adv Agron 69:1–73

    Article  Google Scholar 

  • Pohren RS, Rocha JA, Leal KA, Vargas VM (2012) Soil mutagenicity as a strategy to evaluate environmental and health risks in a contaminated area. Environ Int 44:40–52

    Article  CAS  Google Scholar 

  • Prokop Z, Cupr P, Zlevorova-Zlamalikova V (2003) Mobility, bioavailability, and toxic effects of cadmium in soil samples. Environ Res 91(2):119–126

    Article  CAS  Google Scholar 

  • Roig N, Nadal M, Sierra J, Ginebreda A, Schuhmacher M, Domingo JL (2011) Novel approach for assessing heavy metal pollution and ecotoxicological status of rivers by means of passive sampling methods. Environ Int 37:671–677

    Article  CAS  Google Scholar 

  • Rönnpagel K, Liu W, Ahlf W (1995) Microbial bioassays to assess the toxicity of solid-associated contaminants. Ecotoxicol Environ Saf 31:99–103

    Article  Google Scholar 

  • Shaw LJ, Beaton Y, Glover LA, Killham K, Meharg AA (2000) Interaction between soil, toxicant and lux-marked bacterium during solid phase-contact toxicity testing. Environ Toxicol Chem 19(5):1247–1252

    CAS  Google Scholar 

  • Seiler TB, Schulze T, Hollert H (2008) The risk of altering soil and sediment samples upon extract preparation for analytical and bio-analytical investigations - a review. Anal Bioanal Chem 390(8):1975–1985

  • Skarek M, Cupr P, Bartos T, Kohoutek J, Klanova J, Holoubek I (2007) A combined approach to the evaluation of organic air pollution—a case study of urban air in Sarajevo and Tuzla (Bosnia and Herzegovina). Sci Total Environ 384(1–3):182–193

    Article  CAS  Google Scholar 

  • Stokes JD, Paton GI, Semple KT (2006) Behaviour and assessment of bioavailability of organic contaminants in soil: relevance for risk assessment and remediation. Soil Use Manag 21(s2):475–486

    Google Scholar 

  • Thomas KV, Hurst MR, Matthiessen P, Sheahan D, Williams RJ (2001) Toxicity characterization of organic contaminants in stormwaters from an agricultural headwater stream in south east England. Water Res 35:2411–2416

    Article  CAS  Google Scholar 

  • Traunspurger W, Haitzer M, Höss S, Beier S, Ahlf W, Steinberg C (1997) Ecotoxicological assessment of aquatic sediments with Caenorhabditis elegans (nematoda)—a method for testing in liquid medium and whole-sediment samples. Environ Toxicol Chem 16(2):245–250

    CAS  Google Scholar 

  • Weber J, Kreutzmann J, Plantikow A, Pfitzner S, Claus E, Manz W, Heininger P (2006) A novel particle contact assay with the yeast Saccharomyces cerevisiae for ecotoxicological assessment of freshwater sediments. J Soils Sediments 6(2):84–91

    Article  CAS  Google Scholar 

  • Zielke H, Seiler TB, Niebergall S, Leist E, Brinkmann M, Spira D et al (2011) The impact of extraction methodologies on the toxicity of sediments in the zebrafish (Danio rerio) embryo test. J Soils Sediments 11(2):352–363

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been financially supported by the Czech Ministry of Education (LO1214), (LM2011028). Special thanks are due to Eva Holt for her proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Čupr.

Additional information

Responsible editor: Markus Hecker

Zbyněk Prokop and Anežka Nečasová contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokop, Z., Nečasová, A., Klánová, J. et al. Bioavailability and mobility of organic contaminants in soil: new three-step ecotoxicological evaluation. Environ Sci Pollut Res 23, 4312–4319 (2016). https://doi.org/10.1007/s11356-015-5555-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5555-7

Keywords

Navigation