Abstract
Veterinary antibiotics (VAs) are emerging contaminants of concern in the environment, mainly due to the potential for development of antibiotic-resistant bacteria and effect on microbiota that could interfere with crucial ecosystem functions such as nutrient cycling and decomposition. High levels of VAs such as tetracyclines (TCs) have been reported in agricultural soils amended with manure, which also has the potential to cause surface and groundwater contamination. Several recent studies have focused on developing methods to immobilize VAs such as composting with straw, hardwood chips, commercial biochar, aeration, mixing, heat treatment, etc. The major shortcomings of these methods include high cost and limited effectiveness. In the current study, we assessed the effectiveness of aluminum-based drinking water treatment residuals (Al-WTR) as a “green” sorbent to immobilize TCs in manure and manure-applied soils with varying physicochemical properties by laboratory incubation study. Results show that Al-WTR is very effective in immobilizing tetracycline (TTC) and oxytetracycline (OTC). The presence of phosphate resulted in significant (p < 0.01) decrease in TTC/OTC sorption by Al-WTR, but the presence of sulfate did not. attenuated total reflection (ATR)-FTIR spectroscopy indicate that TTC and OTC likely forming surface complexes via inner-sphere-type bonds in soils, manure, and manure-applied soils amended with Al-WTR.
This is a preview of subscription content, access via your institution.








Abbreviations
- CAFOs:
-
concentrated animal feeding operations
- CTC:
-
chlortetracycline
- IS:
-
ionic strength
- OTC:
-
oxytetracycline
- SSR:
-
sorbate-to-sorbent ratio
- TTC:
-
tetracycline
- TCs:
-
tetracyclines
- VAs:
-
veterinary antibiotics
- WTRs:
-
water treatment residuals
References
Aga DS, O'Connor S, Ensley S, Payero JO, Snow D, Tarkalson D (2005) Determination of the persistence of tetracycline antibiotics and their degradates in manure-amended soil using enzyme-linked immunosorbent assay and liquid chromatography−mass spectrometry. J Agric Food Chem 53(18):7165–7171. doi:10.1021/jf050415+
AHI (2011) Animal health institute news release. AHI, Washington, DC
Arikan OA, Sikora LJ, Mulbry W, Khan SU, Foster GD (2007) Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef calves. Bioresour Technol 98(1):169–176. doi:10.1016/j.biortech.2005.10.041
Arikan O, Mulbry W, Ingram D, Millner P (2009) Minimally managed composting of beef manure at the pilot scale: effect of manure pile construction on pile temperature profiles and on the fate of oxytetracycline and chlortetracycline. Bioresour Technol 100(19):4447–4453. doi:10.1016/j.biortech.2008.12.063
Aristilde L, Marichal C, Miehe-Brendle J, Lanson B, Charlet L (2010) Interactions of oxytetracycline with a smectite clay: a spectroscopic study with molecular simulations. Environ Sci Technol 44(20):7839–7845. doi:10.1021/es102136y.
Bao YY, Zhou QX, Wan Y, Yu QA, Xie XJ (2010) Effects of soil/solution ratios and cation types on adsorption and desorption of tetracycline in soils. Soil Sci Soc Am J 74(5):1553–1561. doi:10.2136/sssaj2009.0402
Bassil RJ, Bashour II, Sleiman FT, Abou-Jawdeh YA (2013) Antibiotic uptake by plants from manure-amended soils. J Environ Sci Health B 48(7):570–574. doi:10.1080/03601234.2013.774898
Blackwell PA, Kay P, Boxall ABA (2007) The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 67(2):292–299. doi:10.1016/j.chemosphere.2006.09.095
Boxall ABA, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54(6):2288–2297. doi:10.1021/jf053041t
Bui TX, Choi H (2010) Influence of ionic strength, anions, cations, and natural organic matter on the adsorption of pharmaceuticals to silica. Chemosphere 80(7):681–686
Chander Y, Kumar K, Goyal SM, Gupta SC (2005) Antibacterial activity of soil-bound antibiotics. J Environ Qual 34(6):1952–1957. doi:10.2134/jeq2005.0017
Chee-Sanford J, Aminov R, Krapac I, Garrigues-Jeanjean N, Mackie R (2001) Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 67(4):1494–1502
Datta R, Sarkar D (2005) Consideration of soil properties in assessment of human health risk from exposure to arsenic‐enriched soils. Integr Environ Assess Manag 1(1):55–59
Dolliver H, Gupta S, Noll S (2008) Antibiotic degradation during manure composting. J Environ Qual 37(3):1245–1253. doi:10.2134/jeq2007.0399
Elliott HA, Dempsey BA (1991) Agronomic effects of land application of water treatment sludges. J Am Water Works Assoc 83(4):126–131
Elliott HA, O'Connor GA, Lu P, Brinton S (2002) Influence of water treatment residuals on phosphorus solubility and leaching. J Environ Qual 31(4):1362–1369
Figueroa RA, MacKay AA (2005) Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environ Sci Technol 39(17):6664–6671. doi:10.1021/es048044l
Figueroa RA, Leonard A, MacKay AA (2004) Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol 38(2):476–483. doi:10.1021/es0342087
Gu C, Karthikeyan K (2005) Interaction of tetracycline with aluminum and iron hydrous oxides. Environ Sci Technol 39(8):2660–2667
Gu C, Karthikeyan K, Sibley S, Pedersen J (2007) Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66(8):1494–1501. doi:10.1016/j.chemosphere.2006.08.028
Hakk H, Millner P, Larsen G (2005) Decrease in water-soluble 17β-estradiol and testosterone in composted poultry manure with time. J Environ Qual 34(3):943–950. doi:10.2134/jeq2004.0164
Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74(7):1509–1518. doi:10.1021/ac015588m
Hamscher G, Pawelzick H, Hoper H, Nau H (2005) Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24(4):861–868
Ippolito J, Barbarick K, Elliott H (2011) Drinking water treatment residuals: a review of recent uses. J Environ Qual 40(1):1–12. doi:10.2134/jeq2010.0242
Jia DA, Zhou DM, Wang YJ, Zhu HW, Chen JL (2008) Adsorption and cosorption of Cu(II) and tetracycline on two soils with different characteristics. Geoderma 146(1–2):224–230. doi:10.1016/j.geoderma.2008.05.023
Kang J, Liu HJ, Zheng YM, Qu JH, Chen JP (2010) Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan. J Colloid Interface Sci 344(1):117–125. doi:10.1016/j.jcis.2009.11.049
Kay P, Blackwell P, Boxall A (2004) Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environ Toxicol Chem 23(5):1136–1144
Kulshrestha P, Giese R, Aga D (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 38(15):4097–4105. doi:10.1021/es034856q
Kumar K, Gupta SC, Chander Y, Singh AK (2005) Antibiotic use in agriculture and its impact on the terrestrial environment. In: Donald LS (ed) Advances in Agronomy, vol 87. Academic Press, pp 1–54. doi: 10.1016/S0065-2113(05)87001-4
Makris K, El-Shall H, Harris W, O'Connor G, Obreza T (2004) Intraparticle phosphorus diffusion in a drinking water treatment residual at room temperature. J Colloid Interface Sci 277(2):417–423. doi:10.1016/j.jcis.2004.05.001
Makris K, Harris W, O'Connor G, Obreza T, Elliott H (2005) Physicochemical properties related to long-term phosphorus retention by drinking-water treatment residuals. Environ Sci Technol 39(11):4280–4289. doi:10.1021/es0480769
McClellan K, Halden RU (2010) Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Res 44(2):658–668. doi:10.1016/j.watres.2009.12.032
Müller AK, Westergaard K, Christensen S, Sørensen SJ (2002) The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol 44(1):49–58. doi:10.1007/s00248-001-0042-8
Munir M, Xagoraraki I (2011) Levels of antibiotic resistance genes in manure, biosolids, and fertilized soil. J Environ Qual 40(1):248–255. doi:10.2134/jeq2010.0209
Oberle K, Capdeville MJ, Berthe T, Budzinski H, Petit F (2012) Evidence for a complex relationship between antibiotics and antibiotic-resistant escherichia coli: from medical center patients to a receiving environment. Environ Sci Technol 46(3):1859–1868. doi:10.1021/es203399h
O'Connor GA, Elliott HA, Lu R (2002) Characterizing water treatment residuals phosphorus retention. Soil Crop Sci Soc Florida Proc 61:67–73
Ostermann A, Siemens J, Welp G, Xue QY, Lin XY, Liu XJ, Amelung W (2013) Leaching of veterinary antibiotics in calcareous Chinese croplands. Chemosphere 91(7):928–934. doi:10.1016/j.chemosphere.2013.01.110
Pils J, Laird D (2007) Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environ Sci Technol 41(6):1928–1933. doi:10.1021/es062316y
Prakash P, Sengupta AK (2003) Selective coagulant recovery from water treatment plant residuals using donnan membrane process. Environ Sci Technol 37(19):4468–4474. doi:10.1021/es030371q
Punamiya PA (2013) Green remediation of veterinary antibiotics in soil-water systems Ph.D. Montclair State University, Ann Arbor
Punamiya P, Sarkar D, Rakshit S, Datta R (2013) Effectiveness of aluminum-based drinking water treatment residuals as a novel sorbent to remove tetracyclines from aqueous medium. J Environ Qual 42(5):1449–1459. doi:10.2134/jeq2013.03.0082
Punamiya P, Sarkar D, Rakshit S, Datta R (2015) Effect of solution properties, competing ligands, and complexing metal on sorption of tetracyclines on Al-based drinking water treatment residuals. Environ Sci Pollut Res Int. doi:10.1007/s11356-015-4145-z
Rakshit S, Elzinga EJ, Datta R, Sarkar D (2013) In situ attenuated total reflectance fourier-transform infrared study of oxytetracycline sorption on magnetite. J Environ Qual 42(3):822–827. doi:10.2134/jeq2012.0412
Rakshit S, Sarkar D, Elzinga EJ, Punamiya P, Datta R (2014) Surface complexation of oxytetracycline by magnetite: effect of solution properties. Vadose Zone J 13(2). doi: 10.2136/vzj2013.08.0147
Sall J, Creighton L, Lehman A (2005) JMP start statistics, 8th edn. SAS Institute, Cary
Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759. doi:10.1016/j.chemosphere.2006.03.026
Sassman SA, Lee LS (2005) Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environ Sci Technol 39(19):7452–7459. doi:10.1021/es0480217
Sengelov G, Agerso Y, Halling-Sorensen B, Baloda SB, Andersen JS, Jensen LB (2003) Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ Int 28(7):587–595. doi:10.1016/s0160-4120(02)00084-3
Stoob K, Singer HP, Mueller SR, Schwarzenbach RP, Stamm CH (2007) Dissipation and transport of veterinary sulfonamide antibiotics after manure application to grassland in a small catchment. Environ Sci Technol 41(21):7349–7355. doi:10.1021/es070840e
Teixidó M, Hurtado C, Pignatello JJ, Beltrán JL, Granados M, Peccia J (2013) Predicting contaminant adsorption in black carbon (biochar)-amended soil for the veterinary antimicrobial sulfamethazine. Environ Sci Technol 47(12):6197–6205. doi:10.1021/es400911c
ter Laak TL, Gebbink WA, Tolls J (2006) The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil. Environ Toxicol Chem 25(4):904–911. doi:10.1897/05-232r.1
Topp E, Monteiro SC, Beck A, Coelho BB, Boxall ABA, Duenk PW, Kleywegt S, Lapen DR, Payne M, Sabourin L, Li HX, Metcalfe CD (2008) Runoff of pharmaceuticals and personal care products following application of biosolids to an agricultural field. Sci Total Environ 396(1):52–59. doi:10.1016/j.scitotenv.2008.02.011
Van Dijk J, Keukens HJ (2000) The stability of some veterinary drugs and coccidiostats during composting and storage of laying hen and broiler faeces. In: Ginkel, LA and Ruiter, A, Eds, Residues of veterinary drugs in food, Proceedings of the EuroResidue IV Conference, Veldhoven, 8–10 May 356–360
Wang Q, Yates SR (2008) Laboratory study of oxytetracycline degradation kinetics in animal manure and soil. J Agric Food Chem 56(5):1683–1688. doi:10.1021/jf072927p
Wang Y-J, Jia D-A, Sun R-J, Zhu H-W, Zhou D-M (2008) Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environ Sci Technol 42(9):3254–3259. doi:10.1021/es702641a
Wang YJ, Sun RJ, Xiao AY, Wang SQ, Zhou DM (2010) Phosphate affects the adsorption of tetracycline on two soils with different characteristics. Geoderma 156(3–4):237–242. doi:10.1016/j.geoderma.2010.02.022
Westergaard K, Müller AK, Christensen S, Bloem J, Sørensen SJ (2001) Effects of tylosin as a disturbance on the soil microbial community. Soil Biol Biochem 33(15):2061–2071. doi:10.1016/S0038-0717(01)00134-1
Winckler C, Grafe A (2001) Use of veterinary drugs in intensive animal production evidence for persistence of tetracycline in pig slurry. J Soils Sediments 1(2):67–70
Zhang D, Pan B, Wu M, Wang B, Zhang H, Peng H, Wu D, Ning P (2011) Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions. Environ Pollut 159(10):2616–2621. doi:10.1016/j.envpol.2011.05.036
Zhang Y, Zhang C, Parker DB, Snow DD, Zhou Z, Li X (2013) Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons. Sci Total Environ 463–464(0):631–638. doi:10.1016/j.scitotenv.2013.06.016
Zhao YP, Gu XY, Gao SX, Geng JJ, Wang XR (2012) Adsorption of tetracycline (TC) onto montmorillonite: cations and humic acid effects. Geoderma 183:12–18. doi:10.1016/j.geoderma.2012.03.004
Acknowledgments
The authors would like to thank Montclair State University (MSU), Montclair, NJ, USA, for the PP’s graduate assistantship and the analytical facilities. PP also acknowledges the Center for Writing Excellence (CWE) for proofreading the manuscript and the Geological Society of America (GSA) and New Jersey Water Resources Research Institute—United States Geological Survey (NJWRRI-USGS) programs for student research grant awards.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Philippe Garrigues
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
Immobilization of tetracyclines in manure and manure-amended soils using aluminum-baseddrinking water treatment residuals
Rights and permissions
About this article
Cite this article
Punamiya, P., Sarkar, D., Rakshit, S. et al. Immobilization of tetracyclines in manure and manure-amended soils using aluminum-based drinking water treatment residuals. Environ Sci Pollut Res 23, 3322–3332 (2016). https://doi.org/10.1007/s11356-015-5551-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-015-5551-y
Keywords
- Tetracyclines
- Drinking water treatment residuals
- Soil
- Manure
- Remediation