Skip to main content
Log in

Mercury contamination from historical mining territory at Malachov Hg-deposit (Central Slovakia)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Environmental contamination caused by mercury is a serious problem worldwide. The study was conducted in order to identify Hg contamination in soil, technosoil from dumps, groundwater, and surface water in the surroundings of the abandoned Hg deposit of Malachov in Central Slovakia. Soil from the Malachovský brook valley was classified as cambi-soil (rendzina). The highest Hg concentrations (44.24 mg kg−1) were described in the soil from the mining area at the Veľká Studňa locality. In the groundwater, the maximal Hg content is 0.84 μg L−1, and in the surface water it is 394 μg L−1. The speciation study proved that in most samples, Hg occurs in the form of cinnabarite. The release of Hg into the environment as a consequence of weathering is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andráš P, Chovan M (2005) Gold incorporation into sulphide minerals from the Tatric unit (the Western Carpathians) with respect to their chemical composition. J Czech Geol Soc 50(3–4):143–155

    Google Scholar 

  • Andráš P, Wagner FE, Ragan M, Friedl I, Marcoux E, Caňo F, Nagy G (1995) Gold in arsenopyrites from Pezinok deposit (Western Carpathians, Slovakia). Geol Carpath 46(6):335–342

    Google Scholar 

  • Arbestain NC, Rodriguez-Lado L, Bao M, Macias F (2009) Mercury polluted soils adjacent to a mercury fulminate production plant. Applied and Environmental Soil Science, Article ID 387419, 1-8

  • Babčan J, Ševc J (1994) Mercury (HgII) in systems with natural organic matter. Ekológia 13(2):199–205

    Google Scholar 

  • Bancík T, Jeleň S (1999) Mineralogical localities of wide surrounding of Banská Bystrica. Banská Bystrica, Brummer and Brummer. ISBN 678-80-79343-99-3, 118 p

  • Bava AP, Van Heyst B (2010) Assessing the trends and effects of environmental parameters on the behaviour of mercury in the lower atmosphere over cropped land over four seasons. Atmos Chem Phys 10:8617–8628, ISSN 1680-7324

    Article  CAS  Google Scholar 

  • Bergfest A (1955) Malachov Hg. State Central Mining Archive, Banská Štiavnica, 128 p

    Google Scholar 

  • Cibulka J, Domažlická E, Kozák J (1991) Transfer of lead, cadmium and mercury in the biosphere. Academia, Praha, 432 p (in Czech). ISBN 80-200-0401-7

    Google Scholar 

  • Compeau G, Bartha R (1984) Methylation and demethylation of mercury under controlled redox, pH and salinity conditions. Appl Environ Microbiol 48(6):1203–1207, ISSN 0099-2240

    CAS  Google Scholar 

  • Čurlík J, Šefčík P (1999) Geochemical Atlas of Slovak Republic. Soils. Bratislava, Ministry of Environment of Slovak Republic, VÚPVR.

  • Dadová J, Barto P, Rusko M, Krnáč J, Dubiel J (2013) Mercury in landscape components around Malachov. Management and Environment, 18.–19. April 2013, Bratislava. ISBN 978-80-89281-90-9, 185-196 (in Slovak)

  • Dadová J, Kupka J, Barto P, Remešicová E, Štrba T (2014) Heavy metal contamination of the country components in surrounding of closed Hg-deposit Malachov. GeoScience Engineering, Ostrava, LX, 1. ISSN 1802-5420, 10-21

  • Davis A, Bloom NS, Que Hee SS (1997) The environmental geochemistry and bioaccessibility of mercury in soils and sediments: a review. Risk Anal 17(5):557–569

    Article  CAS  Google Scholar 

  • Dirner V, Krnáč J, Čmielová L, Lacková E, Andráš P (2012) Acidification process in the area of the abandoned Ľubietová-Podlipa Cu-deposit. Slovakia GeoScience Engineering, LVIII, 3, 63-72, ISSN 1802-5420

  • Douglass DJ, Chichang S, Wang G (1992) The light-induced alteration of realgar to pararealgar. Am Mineral 77:1266–127, ISSN 90024-1595

    CAS  Google Scholar 

  • Dzombak DA, Morel FMM (1987) Adsorption of inorganic pollutants in aquatic systems. J Hydraul Eng 113:430–475, ISSN 0733-9429

    Article  Google Scholar 

  • Ellis WD, Fogg, T (1985) Interim Report: Treatment of soils contaminated by heavy metals, hazardous waste engineering research laboratory. Office of Research and Development, U.S. EPA, Cincinnati, Ohio. EPA/600/9-86/022

  • Evanko CR, Dzombak DA (1997) Remediation of metals-contaminated soils and groundwater. Carnedie Mellon University, Dpt. of Civil and Environmental Engineering, Pittsburgh, PA, E Series: TE-97-01, 53 p.

  • Fečko P, Raclavská H, Kučerová R, Havelek R, Lyčková B, Király A, Babic K (2011) Application of segregation roasting and flotation by recovery of Cu from heap materials from ZB Slovinky. 11th International multidisciplinary Scientific Geoconference (SGEM 2011), vol. III., Albena, Bulgaria, ISSN 1314-2704, 54-57

  • Ferguson JF, Gavis J (1972) A review of the arsenic cycle in natural waters. Water Resour 6:1259–1274

    CAS  Google Scholar 

  • Filella M, Belzile N, Chen YW (2002) Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. Earth-Sci Rev 59(1–4):265–285

    Article  CAS  Google Scholar 

  • Foth HD, Ellis BG (1988) Soil fertility. John Wiley and Sons. ISBN-10: 0471825077 / ISBN-13: 978-0471825074, 212 p

  • Franková H, Čmielová L, Klimko T, Lacková E, Andráš P (2012) Comparative study of Cu, As and Sb toxicity between dump-fields of abandoned Cu-deposits Lubietová and Špania Dolina (Central Slovakia). J Mex Chem Soc 7(4):79–88

    Google Scholar 

  • Gavilán-Garcia I, Santos-Santos E, Tovar-Gálvez LR, Gavilán-Garcia A, Suárez S, Olmos J (2008) Mercury speciation in contaminated soils from oil mining activities in Mexico using a chemical selective extraction. J Mex Chem Soc 52(4):263–271, ISSN 1870-249X

    Google Scholar 

  • Gray JE, Theodorakos PM, Budahn JR, O’Leary RM (2006) Mercury in the environment and its implications, Kuskokwim River Region, southwestern Alaska, in Till AB, Moore, TE (eds.), Geologic Studies in Alaska by the U.S. Geological Survey, 1993: U.S. Geological Survey Bulletin 2107, 3-13

  • Hančuľák J, Bobro M, Šestinová O, Brehuv J, Slančo P (2006) Mercury in the surrounding of old mining loads of Rudňany and Merník. Acta Montan Slovaca 11(2):295–299

    Google Scholar 

  • Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science, 301, 1203 p

  • Hem JD (1970) Chemical behavior of mercury in aqueous media. USGS Professional Paper No. 713, US Government Printing Office, Washington, DC, 19-23

  • Hickel WJ, Pecora WT (1970) Mercury in the environment. Geol Surv Prof Pap 713:1–24

    Google Scholar 

  • Hines ME, Faganeli J, Adatto J, Horvat M (2006) Microbial mercury transformations in marine, estuarine and fresh-water sediment downstream of the Idrija Mercury mine, Slovenia. Appl Geochem ISSN 0883-2927:1924–1939, ISSN 0883-2927

    Article  CAS  Google Scholar 

  • Hunetlach MP, Alpers CN, DiPasquale MM, Taylor HE, Wild JF (2001) Geochemistry of mercury and other trace elements in fluvial tailings upstream of Daguerre point dam, Yuba river, California, August 2001. U.S. Geological Survey, Scientific Investigations Report 2004-5165

  • Ivančík Ľ, Mitáček J (1986) New knowledges on geological setting of Hg-deposit Zlatá Studňa. Geological Institute of Slovak Academy of Sciences, Banská Bystrica, 15 p

    Google Scholar 

  • Jeleň S, Galvánek J, Andráš P, Bendík A, Beláček B, Bozalková I, Gaál Ľ, Gajdoš A, Háber M, Konečný V, Križáni I, Luptáková J, Mazúrek J, Michal P, Soták J, Staňová S, Šimo V, Šurka J, Wetter R (2010) Educational-cognitive guide to the geological and geographical locations of Central Slovakia. Quick Print, Martin, 320 p (in Slovak). ISBN 978-80-970413-4-2

    Google Scholar 

  • Kafka Z, Punčochářová J (2002) Heavy metals in nature and their toxicity. Chemické listy, 96, ISSN 1213-7103, 611-617 (in Czech)

  • Kempa T, Marschalko M, Yilmaz I, Lacková E, Kubečka K, Stalmachová B, Bouchal T, Bednárik M, Drusa M, Bendová M (2013) In-situ remediation of the contaminated soils in Ostrava city (Czech Republic) by steam curing/vapor. Eng Geol 154:42–55

    Article  Google Scholar 

  • Koděra M, Andrusovová-Vlčeková G, Belešová O, Briatková D, Dávidová Š, Fejdiová V, Hurai V, Chovan M, Nelišerivá V, Ženiš P, Fejdi P, Gregorová Z, Greguš J, Határ J, Hvožďara P, Chovanová M, Judinová V, Karolusová E, Ondrušová S, Šamajová E, Varčeková A (1990) Topographis mineralogy 2. Veda, vydavateľstvo SAV, Bratislava. 518 p (in Slovak)

  • Kopecký M (2004) The prediction of landslide formation possibilities in the Slovakia based on analysis of climatic and hydrogeological conditions. Sborník vědeckých prací VŠB-Technické univerzity Ostrava, Řada hornicko-geologická. ISSN 0474-8476, Volume L, 2, 63-72 (in Slovak)

  • Kotnik J, Sprovieri F, Ogrinc N, Horvat M, Pirrone N (2014) Mercury in the Mediterranean, part I: spatial and temporal trends. Environ Sci Pollut Res 21:4063–4080. doi:10.1007/s1135601323782

    Article  CAS  Google Scholar 

  • Kučerová L, Heviánková S, Bestová I, Kučerová R (2013) Removal of metals from mine water by ash from combustion of biomass of plant origin. Albena, SGEM. ISSN 1314-2704. Volume 1, s. 661-668

  • Kuwabara JS, Arai Y, Topping BR, Pickering IJ, Graham GN (2007) Mercury speciation in piscivorous fish from mining-impacted reservoirs. Environ Sci Technol 41:2745–2749

    Article  CAS  Google Scholar 

  • Lalinská B, Chovan M, Kučerová G, Šottník P, Petrák M, (2010) Processes of sulphides oxidation and As, Sb migration in the environment of tailing impoundment at abandoned Sb-Au deposit Čučma. Mineralia Slovaca, 42. ISSN 0369-2086, 79-94 (in Slovak)

  • Langford BR, Ferner RE (1999) Toxicity of mercury. J Hum Hypertens 13:651–656

    Article  CAS  Google Scholar 

  • Lapčík V, Lapčíková M, Hanslík A, Jež J (2014) Possibilities of gasification and pyrolysis technology in branch of energy recovery from waste. Inźynieria Mineralna. Krakov, Journal of the Polish Mineral Engineering Society, Volume XV, No. 1(33), pp 149-154, ISSN 1640-4920

  • Lehnherr I, St Louis VL, Hintelmann H, Kirk JL (2011) Methylation of inorganic mercury in polar marine water. Nat Geosci 4:298–302, ISSN 1752–0894

    Article  CAS  Google Scholar 

  • Li P, Feng X, Qiu G, Zhang J, Meng B, Wang J (2013) Mercury speciation and mobility in mine wastes from mercury mines in China. Environ Sci Pollut Res 20:8374–8381. doi:10.1007/s1135601317319

    Article  CAS  Google Scholar 

  • Lowry GW, Shaw S, Kim CS, Rytuba JJ, Brown GE (2004) Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and Sulphur Bank mercury mine tailings. Environ Sci Technol 38(19):5101–5111, ISSN 0013-936X

    Article  CAS  Google Scholar 

  • Lu J, Grégorie DC (2005). Speciation of inorganic mercury associated with solid matrices by thermal desorption coupled with ICM-MS. In: Parsons MB, Percival JB (Eds.) Mercury, sources, measurements, cycles and effects, Mineralogical Association of Canada, Short Course Series, 34, 79-93

  • Marschalko M, Bednárik M, Yilmaz I, Bouchal T, Kubečka K (2012) Evaluation of subsidence due to underground coal mining: an example from the Czech Republic. Bull Eng Geol Environ. doi:10.1007/s1006401104018

    Google Scholar 

  • Moldovan OT, Meleg LN, Levei E, Terente M (2013) A simple method for assessing biotic indicators and predicting biodiversity in the hypotheic zone of a river polluted with metals. Ecol Indic 24:412–420, ISSN 1470-160X

    Article  CAS  Google Scholar 

  • Muddarisna N, Krisnayanti BD, Utami SR, Handayanto E (2013) Phytoremediation of mercury-contaminated soil using three wild plant species and its effect on maize growth. Applied Ecology and Environmental Sciences, 1, 3, 27-32, DOI:10.12691/aces-1-3-1.

  • Navarro A (2008) Review of characteristics of mercury speciation and mobility from areas of mercury mining in semi-arid environments. Rev Environ Sci Biotechnol 7:287–306

    Article  CAS  Google Scholar 

  • Ordónez A, Álvarez R, Charlesworth E, De Miguel E, Loredo J (2011) Risk assessment of soils contaminated by mercury mining, Northern Spain. J Environ Monit 13(128):128–136, ISSN 1464-0325

    Article  Google Scholar 

  • Pitter P (2009) Hydrogeochemistry. Vysoká škola chemicko-technologická, Praha, 579 p (in Slovak). ISBN 978-80-7080-701-9

    Google Scholar 

  • Pokrovski GS, Kara S, Roux J (2002) Stability and solubility of arsenopyrite, FeAsS, in crustal fluids. Geochimica et Cosmochimica Acta, 66, 13, 1, 2361-2378.

  • Richter R, Hlůšek J (2003) Soil fertility. ÚZEI, MZe, Praha, 36 p (in Czech)

    Google Scholar 

  • Ryu J, Gao S, Dahlgren RA, Ziernberg RA (2002) Arsenic distribution, speciation and solubility in shallow groundwater of Owens Dry Lake, California. Geochimica et Cosmochimica Acta 66(17):2981–2994

    Article  CAS  Google Scholar 

  • Santos-Santos E, Yarto-Ramírez M, Gavilán-Garcia I, Castro-Diaz J, Gavilán-Garcia A, Rosiles R, Suárez S, López-Villegas T (2006) Analysis of arsenic, lead and mercury in farming areas with mining contaminated soils at Zacatecas, Mexico. J Mex Chem Soc 50(2):57–63, ISSN 1870-249X

    CAS  Google Scholar 

  • Slivka V, Vidlář J, Thomas J (2010) Mine waters in the Czech Republic—current situation and trend development. Desalin Water Treat 2010(14):52–60

    Article  CAS  Google Scholar 

  • Smith LA, Means JL, Chen A, Alleman B, Chapman CC, Tixier JS Jr, Brauning SE, Gavaskar AR, Royer MD (1995) Remedial options for metals-contaminated sites. Lewis Publishers, Boca Raton, 615 p

    Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburden and minesoils. U. S. Environmental Protection Agency, Environmental Protection Technology, EPA 600/2-78-054, 203 p

  • Tréger M, Baláž P (1997) Mineral resources of the Slovak Republic. Bratislava. ISBN 80-85314-91-6, 203 p (in Slovak)

  • Vink BW (1996) Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chem Geol 130(1):21–30

    Article  CAS  Google Scholar 

  • Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012) Remediation of mercury contaminated sites - A review. Journal of Hazardous Materials, 221–222, ISSN 03043894, 1-18

  • Wild A, Ed. (1988), Russell’s soil conditions and plant growth, 11th Edition, Longman, London, 472 p., ISBN 9781118337295.

  • Závadská M, Žemberyová M, Farkašovská I (1999) Speciation of mercury in soils using sequential extraction. Chem List 93:391–393 (in Slovak)

    Google Scholar 

Download references

Acknowledgments

The article was written with the support from the Slovak Research and Development Agency, in the framework of the projects APVV-0663-10 and VEGA 1/0538/15. The authors also wish to thank Dr. Giuseppe Buccheri for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jana Dadová, Peter Andráš or Jiří Kupka.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadová, J., Andráš, P., Kupka, J. et al. Mercury contamination from historical mining territory at Malachov Hg-deposit (Central Slovakia). Environ Sci Pollut Res 23, 2914–2927 (2016). https://doi.org/10.1007/s11356-015-5527-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5527-y

Keywords

Navigation