Environmental Science and Pollution Research

, Volume 23, Issue 11, pp 10361–10370 | Cite as

Levels and distributions of polybrominated diphenyl ethers, hexabromocyclododecane, and tetrabromobisphenol A in sediments from Taihu Lake, China

  • Jingzhi Wang
  • Xuwei Jia
  • Shutao Gao
  • Xiangying Zeng
  • Huiru Li
  • Zhen Zhou
  • Guoying Sheng
  • Zhiqiang YuEmail author
Recent sediments: environmental chemistry, ecotoxicology and engineering


The concentrations and distribution of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), and tetrabromobisphenol A (TBBPA) were investigated in 28 sediment samples collected from Taihu Lake, Eastern China. The results showed that all three classes of compounds were detected in 28 sediment samples but that PBDEs were the main contaminants in the study area. The total PBDE concentrations ranged from 3.77 to 347 ng/g dry weight (dw) with a mean value of 72.8 ng/g dw, whereas the concentrations ranged from 0.168 to 2.66 and from 0.012 to 1.30 ng/g dw for HBCD and TBBPA, respectively. In all of the sediment samples, BDE-209 was the predominant congener, accounting for 95.9 to 98.6 % of the total PBDEs, which indicated that commercial mixtures of deca-BDEs were the main sources of PBDE contamination. Higher concentrations of PBDEs were found in samples collected from Meiliang Bay and Gonghu Bay near the inflow river, which suggested that inflow runoff might play an important role in the PBDE levels in Taihu Lake sediments.


Polybrominated diphenyl ethers Hexabromocyclododecane Tetrabromobisphenol A Sediment Taihu Lake 



This work was financially supported by the National Natural Science Foundation of China (No. 41130752, 41173111), the National Natural Science Funds for Distinguished Young Scholars (41225013) and Integration of Production and Research projects of Guangdong province (2012B090500014). This is contribution no. IS-2139 from GIGCAS.


  1. Alaee M, Arias P, Sjödin A, Bergman Å (2003) An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int 29:683–689CrossRefGoogle Scholar
  2. Barontini F, Cozzani V, Marsanich K, Raffa V, Petarca L (2004) An experimental investigation of tetrabromobisphenol A decomposition pathways. J Anal Appl Pyrolysis 72:41–53CrossRefGoogle Scholar
  3. Brominane Science and Environmental Forum (BSEF). (last accessed Dec 2005)
  4. Cao SX, Zeng XY, Song H, Li HR, Yu ZQ, Sheng GY, Fu JM (2012) Levels and distributions of organophosphate flame retardants and plasticizers in sediment from Taihu Lake, China. Environ Toxicol Chem 31:1478–1484CrossRefGoogle Scholar
  5. Chen SJ, Gao XJ, Mai BX, Chen ZM, Luo XJ, Sheng GY, Fu JM, Zeng EY (2006) Polybrominated diphenyl ethers in surface sediments of the Yangtze River Delta: levels, distribution and potential hydrodynamic influence. Environ Pollut 144:951–957CrossRefGoogle Scholar
  6. Chen XW, Zhu LY, Pan XY, Fang SH, Zhang YF, Yang LP (2015) Isomeric specific partitioning behaviors of perfluoroalkyl substances in water dissolved phase, suspended particulate matters and sediments in Liao River Basin and Taihu Lake, China. Water Res 80:235–244CrossRefGoogle Scholar
  7. Chu SG, Haffner GD, Letcher RJ (2005) Simultaneous determination of tetrabromobisphenol A, tetrachlorobisphenol A, bisphenol A and other halogenated analogues in sediment and sludge by high performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 1097:25–32CrossRefGoogle Scholar
  8. Covaci A, Gerecke AC, Law RJ, Voorspoels S, Kohler M, Heeb NV, Leslie H, Allchin CR, de Boer J (2006) Hexabromocyclododecanes (HBCDs) in the environment and humans: a review. Environ Sci Technol 40:3679–3688CrossRefGoogle Scholar
  9. Covaci A, Voorspoels S, Abdallah MA, Geens T, Harrad S, Law RJ (2009) Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. J Chromatogr A 1216:346–363CrossRefGoogle Scholar
  10. Darnerud PO, Lignell S, Aune M, Isaksson M, Cantillana T, Redeby J, Glynn A (2015) Time trends of polybrominated diphenylether (PBDE) congeners in serum of Swedish mothers and comparisons to breast milk data. Environ Res 138:352–360CrossRefGoogle Scholar
  11. Davis JW, Gonsior SJ, Markham DA, Friederich U, Hunziker RW, Ariano JM (2006) Biodegradation and product identification of [14C] hexabromocyclododecane in wastewater sludge and freshwater aquatic sediment. Environ Sci Technol 40:5395–5401CrossRefGoogle Scholar
  12. Eljarrat E, De La Cal A, Larrazabal D, Fabrellas B, Fernandez-Alba AR, Borrull F, Marce RM, Barcelo D (2005) Occurrence of polybrominated diphenylethers, polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls in coastal sediments from Spain. Environ Pollut 136:493–501CrossRefGoogle Scholar
  13. European Union Risk Assessment Report on 2,2’,6,6’-tetrabromo-4,4’-isopropylidenediphenol (tetrabromobisphenol-A or TBBP-A). Part II—human health, vol. 63, European Commission, Joint Research Centre, European Chemical Bureau, EUR2216E (2006)Google Scholar
  14. Feng AH, Chen SJ, Chen MY, He MJ, Luo XJ, Mai BX (2012) Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) in riverine and estuarine sediments of the Pearl River Delta in southern China, with emphasis on spatial variability in diastereoisomer- and enantiomer-specific distribution of HBCD. Mar Pollut Bull 64:919–925CrossRefGoogle Scholar
  15. Gao ST, Hong JW, Yu ZQ, Wang JZ, Yang GY, Sheng GY, Fu JM (2011) Polybrominated diphenyl ethers in surface soils from e-waste recycling areas and industrial areas in South China: concentration levels, congener profile, and inventory. Environ Toxicol Chem 30:2688–2696CrossRefGoogle Scholar
  16. Guerra P, Eliarrat E, Barceló D (2008) Enantiomeric specific determination of hexabromocyclododecane by liquid chromatography-quadrupole linear ion trap mass spectrometry in sediment samples. J Chromatogr A 1203:81–87CrossRefGoogle Scholar
  17. Guzzella L, Roscioli C, Binelli A (2008) Contamination by polybrominated diphenyl ethers of sediments from the Lake Maggiore basin (Italy and Switzerland). Chemosphere 73:1684–1691CrossRefGoogle Scholar
  18. Harrad S, Abdallah MAE, Cocaci A (2009a) Causes of variability in concentrations and diastereomer patterns of hexabromocyclododecanes in indoor dust. Environ Int 35:573–579CrossRefGoogle Scholar
  19. Harrad S, Abdallah MAE, Rose N, Turner SD, Davidson TA (2009b) Current-use brominated lame retardants in water, sediment, and fish from English lakes. Environ Sci Technol 43:9077–9083CrossRefGoogle Scholar
  20. Haukås M, Ruus A, Hylland K, Berge JA, Mariussen E (2010) Bioavailability of Hexabromocyclododecane to the polychaete Hediste diversicolor: exposure through sediment and food from a contaminated fjord. Environ Toxicol Chem 29:1709–1715Google Scholar
  21. Heeb NV, Schweizer WB, Mattrel P, Haag R, Gerecke AC, Schmid P, Zennegg M, Vonmont H (2008) Regio- and stereoselective isomerization of hexabromocyclododecanes (HBCDs): kinetics and mechanism of γ- to α-HBCD isomerization. Chemosphere 73:1201–1210CrossRefGoogle Scholar
  22. Hu GC, Xu ZC, Dai JY, Mai BX, Cao H, Wang JS, Shi ZM, Xu MQ (2010) Distribution of polybrominated diphenyl ethers and decabromodiphenylethane in surface sediments from Fuhe River and Baiyangdian Lake, North China. J Environ Sci 22:1833–1839CrossRefGoogle Scholar
  23. Ilyas M, Sudaryanto A, Setiawan IE, Riyadi AS, Isobe T, Takahashi S, Tanabe S (2011) Characterization of polychlorinated biphenyls and brominated flame retardants in sediments from riverine and coastal waters of Surabaya, Indonesia. Mar Pollut Bull 62:89–98CrossRefGoogle Scholar
  24. Kim UJ, Jo H, Lee IS, Joo GJ, Oh JE (2015) Investigation of bioaccumulation and biotransformation of polybrominated diphenyl ethers, hydroxylated and methoxylated derivatives in varying trophic level freshwater fishes. Chemosphere 137:108–114CrossRefGoogle Scholar
  25. La Guardia MJ, Hale RC, Harvey E (2007) Evidence of debromination of decabromodiphenyl ether (BDE-209) in biota from a wastewater receiving stream. Environ Sci Technol 41:6663–6670CrossRefGoogle Scholar
  26. Law RJ, Covaci A, Harrad S, Herzke D, Abdallah MAE, Femie K, Toms LML, Takigami H (2014) Levels and trends of PBDEs and HBCDs in the global environment: status at the end of 2012. Environ Int 65:147–158CrossRefGoogle Scholar
  27. Li HH, Zhang QH, Wang P, Li YM, Lv JX, Chen WH, Geng DW, Wang YW, Wang T, Jiang GB (2012) Levels and distribution of hexabromocyclododecane (HBCD) in environmental samples near manufacturing facilities in Laizhou ay area, East China. J Environ Monit 14:2591–2597CrossRefGoogle Scholar
  28. Liu HH, Hu YJ, Luo P, Bao LJ, Qiu JW, Leung KMY, Zeng EY (2014) Occurrence of halogenated flame retardants in sediment off an urbanized coastal zone: association with urbanization and industrialization. Environ Sci Technol 48:8465–8473CrossRefGoogle Scholar
  29. Luo Y, Luo XJ, Lin Z, Chen SJ, Liu J, Mai BX, Yang ZY (2009) Polybrominated diphenyl ethers in road and farmland soils from an e-waste recycling region in southern China: concentrations, source profiles, and potential dispersion and deposition. Sci Total Environ 407:1105–1113CrossRefGoogle Scholar
  30. Mai BX, Chen SJ, Luo XJ, Chen LG, Yang QS, Sheng GY, Peng PA, Fu JM, Zeng EY (2005) Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea. Environ Sci Technol 39:3521–3527CrossRefGoogle Scholar
  31. Marvin CH, Tomy GT, Alaee M, MacInnis G (2006) Distribution of hexabromocyclododecane in Detroit River suspended sediments. Chemosphere 64:268–275CrossRefGoogle Scholar
  32. Minh NH, Isobe T, Ueno D, Matsumoto K, Mine M, Kajiwara N, Takahashi S, Tanabe S (2007) Spatial distribution and vertical profile of polybrominated diphenyl ethers and hexabromocyclododecanes in sediment core from Tokyo Bay, Japan. Environ Pollut 148:409–417CrossRefGoogle Scholar
  33. Moon HB, Kannan K, Choi M, Choi HG (2007) Polybrominated diphenyl ethers (PBDEs) in marine sediments from industrialized bays of Korea. Mar Pollut Bull 54:1402–1412CrossRefGoogle Scholar
  34. Morris S, Allchin CR, Zegers BN, Haftka JH, Boon JP, Belpaire C, Leonards PEG, Van Leeuwen SPJ, de Boer J (2004) Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs. Environ Sci Technol 38:5497–5504CrossRefGoogle Scholar
  35. Ramu K, Isobe T, Takahashi S, Kim EY, Min BY, We SU, Tanabe S (2010) Spatial distribution of polybrominated diphenyl ethers and hexabromocyclododecanes in sediments from coastal waters of Korea. Chemosphere 79:713–719CrossRefGoogle Scholar
  36. Ronen Z, Abeliovich A (2000) Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A. Appl Environ Microbiol 66:2372–2377CrossRefGoogle Scholar
  37. Sellström U, Kierkegaard A, de Wit C, Jansson B (1998) Polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from a Swedish river. Environ Toxicol Chem 17:1065–1072CrossRefGoogle Scholar
  38. Song WL, Li A, Ford JC, Sturchio NC, Rockne KJ, Buckley DR, Mills WJ (2005) Polybrominated diphenyl ethers in the sediments of the great lakes. 2. Lakes Michigan and Huron. Environ Sci Technol 39:3474–3479CrossRefGoogle Scholar
  39. Verslycke TA, Vethaak AD, Arijs K, Janssen CR (2005) Flame retardants, surfactants and organotins in sediment and mysid shrimp of the Scheldt estuary (The Netherlands). Environ Pollut 136:19–31CrossRefGoogle Scholar
  40. Yang ZZ, Zhao XR, Qin ZF, Fu S, Li XH, Qin XF, Xu XB, Jin ZX (2009) Polybrominated diphenyl ethers in mudsnails (Cipangopaludina cahayensis) and sediments from an electronic waste recycling region in south China. Bull Environ Contam Toxicol 82:206–210CrossRefGoogle Scholar
  41. Yun SH, Addink R, McCabe JM, Ostaszewski A, Mackenzie-Taylor D, Taylor AB, Kannan K (2008) Polybrominated diphenyl ethers and polybrominated biphenyls in sediment and floodplain soils of the Saginaw River watershed, Michigan, USA. Arch Environ Contam Toxicol 55:1–10CrossRefGoogle Scholar
  42. Zhong YH, Liang XL, Zhong Y, Zhu JX, Zhu SY, Yuan P, He HP, Zhang J (2012) Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: catalyst characterization, performance and degradation products. Water Res 46:4633–4644CrossRefGoogle Scholar
  43. Zhou L, Li HR, Yu ZQ, Ren M, Zeng XY, Peng PA, Sheng GY, Fu JM (2012a) Chlorinated and brominated dibenzo-p-dioxins and dibenzofurans in surface sediment from Taihu Lake, China. J Environ Monitor 14:1935–1942CrossRefGoogle Scholar
  44. Zhou P, Lin KF, Zhou XY, Zhang W, Huang K, Liu LL, Guo J, Xu F (2012b) Distribution of polybrominated diphenyl ethers in the surface sediments of Taihu Lake, China. Chemosphere 88:1375–1382CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jingzhi Wang
    • 1
    • 2
  • Xuwei Jia
    • 1
  • Shutao Gao
    • 1
  • Xiangying Zeng
    • 1
  • Huiru Li
    • 1
  • Zhen Zhou
    • 3
  • Guoying Sheng
    • 1
  • Zhiqiang Yu
    • 1
    Email author
  1. 1.State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  2. 2.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  3. 3.Guangzhou Hexin Analyt Instrument Co LtdGuangzhouChina

Personalised recommendations