Skip to main content
Log in

Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46–10.96) and 0.9 (0.27–1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21–2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86–28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Anizi AA, Hellyer MT, Zhang D (2014) Toxicity assessment and modelling of Moringa oleifera seeds in water purification by whole cell bioreporter. Water Res 56:77–87

    Article  CAS  Google Scholar 

  • Amorim MJ, Römbke J, Soares AM (2005) Avoidance behaviour of Enchytraeus albidus: effects of benomyl, carbendazim, phenmedipham and different soil types. Chemosphere 59:501–510

    Article  CAS  Google Scholar 

  • An YJ (2005) Assessing soil ecotoxicity of methyl tert-butyl ether using earthworm bioassay; closed soil microcosm test for volatile organic compounds. Environ Pollut 134:181–186

    Article  CAS  Google Scholar 

  • Arita A, Costa M (2009) Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics 1:222–228

    Article  CAS  Google Scholar 

  • Baumann B, van der Meer JR (2007) Analysis of bioavailable arsenic in rice with whole cell living bioreporter bacteria. J Agric Food Chem 55:2115–2120

    Article  CAS  Google Scholar 

  • Bradham KD, Dayton EA, Basta NT, Schroder J, Payton M, Lanno RP (2006) Effect of soil properties on lead bioavailability and toxicity to earthworms. Environ Toxicol Chem 25:769–775

    Article  CAS  Google Scholar 

  • Branco R, Cristovao A, Morais PV (2013) Highly sensitive, highly specific whole-cell bioreporters for the detection of chromate in environmental samples. PLoS One 8:e54005

    Article  CAS  Google Scholar 

  • Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP (1999) ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 31:893–902

    Article  CAS  Google Scholar 

  • Chivers PT, Sauer RT (2000) Regulation of high affinity nickel uptake in bacteria. Ni2+-dependent interaction of NikR with wild-type and mutant operator sites. J Biol Chem 275:19735–19741

    Article  CAS  Google Scholar 

  • Diesel E, Schreiber M, van der Meer JR (2009) Development of bacteria-based bioassays for arsenic detection in natural waters. Anal Bioanal Chem 394:687–693

    Article  CAS  Google Scholar 

  • Gireesh-Babu P, Chaudhari A (2012) Development of a broad-spectrum fluorescent heavy metal bacterial biosensor. Mol Biol Rep 39:11225–11229

    Article  CAS  Google Scholar 

  • Ivask A, Green T, Polyak B, Mor A, Kahru A, Virta M, Marks R (2007) Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. Biosens Bioelectron 22:1396–1402

    Article  CAS  Google Scholar 

  • Ivask A, Rolova T, Kahru A (2009) A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing. BMC Biotechnol 9:41

    Article  CAS  Google Scholar 

  • Jusoh WNAW, Wong LS (2014) Exploring the potential of whole cell biosensor: a review in environmental applications. Int J Chem Environ Bio Sci 2:52–56

    Google Scholar 

  • Leitch S, Bradley MJ, Rowe JL, Chivers PT, Maroney MJ (2007) Nickel-specific response in the transcriptional regulator, Escherichia coli NikR. J Am Chem Soc 129:5085–5095

    Article  CAS  Google Scholar 

  • Loska K, Wiechula D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165

    Article  CAS  Google Scholar 

  • Navarro C, Wu LF, Mandrand-Berthelot MA (1993) The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol Microbiol 9:1181–1191

    Article  CAS  Google Scholar 

  • Phillips CM, Schreiter ER, Guo Y, Wang SC, Zamble DB, Drennan CL (2008) Structural basis of the metal specificity for nickel regulatory protein NikR. Biochemistry 47:1938–1946

    Article  CAS  Google Scholar 

  • Priyadarshi H, Alam A, Gireesh-Babu P, Das R, Kishore P, Kumar S, Chaudhari A (2012) A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg(II) in environment. J Environ Sci (China) 24:963–968

    Article  CAS  Google Scholar 

  • Riether KB, Dollard MA, Billard P (2001) Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors. Appl Microbiol Biotechnol 57:712–716

    Article  CAS  Google Scholar 

  • Robbens J, Dardenne F, Devriese L, De Coen W, Blust R (2010) Escherichia coli as a bioreporter in ecotoxicology. Appl Microbiol Biotechnol 88:1007–1025

    Article  CAS  Google Scholar 

  • Rodrigue A, Effantin G, Mandrand-Berthelot M-A (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187:2912–2916

    Article  CAS  Google Scholar 

  • Rooney CP, Zhao F-J, McGrath SP (2007) Phytotoxicity of nickel in a range of European soils: Influence of soil properties, Ni solubility and speciation. Environ Pollut 145:596–605

    Article  CAS  Google Scholar 

  • Rowe JL, Starnes GL, Chivers PT (2005) Complex transcriptional control links NikABCDE-dependent nickel transport with hydrogenase expression in Escherichia coli. J Bacteriol 187:6317–6323

    Article  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular cloning. Cold Spring Harbor Laboratory Press: New York

  • Schreiter ER, Sintchak MD, Guo Y, Chivers PT, Sauer RT, Drennan CL (2003) Crystal structure of the nickel-responsive transcription factor NikR. Nat Struct Biol 10:794–799

    Article  CAS  Google Scholar 

  • Selifonova O, Burlage R, Barkay T (1993) Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol 59:3083–3090

    CAS  Google Scholar 

  • Smolders E, Buekers J, Oliver I, McLaughlin MJ (2004) Soil properties affecting toxicity of zinc to soil microbial properties in laboratory‐spiked and field‐contaminated soils. Environ Toxicol Chem 23:2633–2640

    Article  CAS  Google Scholar 

  • Sorensen SJ, Burmolle M, Hansen LH (2006) Making bio-sense of toxicity: new developments in whole-cell biosensors. Curr Opin Biotechnol 17:11–16

    Article  CAS  Google Scholar 

  • Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799

    Article  CAS  Google Scholar 

  • Teo SC, Wong LS (2014) Whole cell-based biosensors for environmental heavy metals detection. Annual Res Rev Biol 4:2663

    Article  Google Scholar 

  • Turpeinen R, Virta M, Haggblom MM (2003) Analysis of arsenic bioavailability in contaminated soils. Environ Toxicol Chem 22:1–6

    Article  CAS  Google Scholar 

  • Wackwitz A, Harms H, Chatzinotas A, Breuer U, Vogne C, Van Der Meer JR (2008) Internal arsenite bioassay calibration using multiple bioreporter cell lines. Microb Biotechnol 1:149–157

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011

  • Zhou JD, Rudd KE (2013) EcoGene 3.0. Nucleic Acids Res 41:D613–D624

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korean Ministry of the Environment as a GAIA Project (2014000560001). We thank the Korea Basic Science Institute (KBSI) for the ICP-MS analysis.

Supporting data

Supporting data is available in Supplementary information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Joo An.

Additional information

Responsible editor: Zhihong Xu

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, Y., Kang, Y., Chae, Y. et al. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters. Environ Sci Pollut Res 23, 2353–2361 (2016). https://doi.org/10.1007/s11356-015-5457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5457-8

Keywords

Navigation