Skip to main content

Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia

Abstract

Increasing human activity continues to threaten peatlands, and as the area of natural mires declines, our obligation is to restore their ecosystem functions. Several restoration strategies have been developed for restoration of extracted peatlands, including “The moss layer transfer method”, which was initiated on the Tässi extracted peatland in central Estonia in May 2012. Three-year study shows that despite the fluctuating water table, rainfall events can compensate for the insufficient moisture for mosses. Total plant cover on the restoration area attained 70 %, of which ~60 % is comprised of target species—Sphagnum mosses. From restoration treatments, spreading of plant fragments had a significant positive effect on the cover of bryophyte and vascular plants. Higher water table combined with higher plant fragments spreading density and stripping of oxidised peat layer affected positively the cover of targeted Sphagnum species. The species composition in the restoration area became similar to that in the donor site in a natural bog. Based on results, it was concluded that the method approved for restoration in North America gives good results also in the restoration of extracted peatland towards re-establishment of bog vegetation under northern European conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Anderson P (2014) Bridging the gap between applied ecological science and practical implementation in peatland restoration. J Appl Ecol 51:1148–1152

    Article  Google Scholar 

  2. Aronson MFJ, Galatowitsch S (2008) Long-term vegetation development of restored prairie pothole wetlands. Wetlands 28(4):883–895

    Article  Google Scholar 

  3. Backėus I (1988) Weather variables as predictors of Sphagnum growth on a bog. Holarctic Ecol 11(2):146–150

    Google Scholar 

  4. Bret-Harte MS, Shaver GR, Chapin FS III (2002) Primary and secondary stem growth in arctic shrubs: implications for community response to environmental change. J Ecol 90:251–267

    Article  Google Scholar 

  5. Campbell DR, Rochefort L, Lavoie C (2003) Determining the immigration potential of plants colonizing disturbed environments: the case of milled peatlands in Quebec. J Appl Ecol 40:78–91

    Article  Google Scholar 

  6. Caners RT, Macdonald SE, Belland RJ (2009) Recolonization potential of bryophyte diaspore banks in harvested boreal mixed-wood forest. Plant Ecol 204:55–68

    Article  Google Scholar 

  7. Chirino C, Campeau S, Rochefort L (2006) Sphagnum establishement on bare peat: the importance of climatic variability and Sphagnum species richness. Appl Veg Sci 9(2):285–294

    Google Scholar 

  8. Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London, pp 229–289

    Chapter  Google Scholar 

  9. Constanza R, d’Arge R, de Groots R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  Google Scholar 

  10. Corson A, Campbell D (2013) Testing protocols to restore disturbed Sphagnum—dominated peatlands in the Hudson Bay Lowland. Wetlands 33:291–299

    Article  Google Scholar 

  11. Crum H (1984) North American Flora. Series II, part 11, Sphagnopsida. Sphagnaceae. The New York Botanical Garden, New York

    Google Scholar 

  12. Eggelsmann R (1988) The rewetting of raised bogs. Geowissenschaften 11:317–322

    Google Scholar 

  13. Gerdol R (1996) The seasonal growth pattern of Sphagnum magellanicum Brid. In different microhabitats on a mire in the southerb Alps (Italy). Oecologia 5(1):13–20

    Google Scholar 

  14. Gonzáles E, Rochefort L, Boudreau S, Hugron S, Poulin M (2013) Can indicator species predict restoration outcomes early in the monitoring process? A case study with peatlands. Ecol Indic 32:232–238

    Article  Google Scholar 

  15. Gonzáles E, Rochefort L, Boudreau S, Poulin M (2014) Combining indicator species and key environmental and management factors to predict restoration success of degraded ecosystems. Ecol Indic 46:156–166

    Article  Google Scholar 

  16. González E, Rochefort L (2014) Drivers of success in 53 cutover bogs restored by a moss layer transfer technique. Ecol Eng 68:279–290

    Article  Google Scholar 

  17. Groeneveld EVG, Rochefort L (2005) Polytrichum strictum as a solution to frost heaving in disturbed ecosystems: a case study with milled peatlands. Restor Ecol 13(1):74–82

    Article  Google Scholar 

  18. Hájek T, Beckett RP (2008) Effect of water content components on desiccation and recovery in Sphagnum mosses. Ann Bot-London 101(1):165–173

    Article  Google Scholar 

  19. Heikkilä H, Lindholm T, Jakkola S (2002) Soiden ennallistamisopas. A guide for the restoration of peatland habitats. Metsähallituksen luonnonsuojelulkaisuja 66:1–124

    Google Scholar 

  20. Hill MO, Bell N, Gruggeman-Nannenga MA, Brugues M, Cano MJ, Enroth J, Flatberg KI, Frahm J-P, Gallego MT, Garilleti R, Guerra J, Hedenäs L, Holyoak DT, Hyvönen J, Ignatov M, Lara F, Mazimpaka V, Muňoz J, Söderström L (2006) An annotated checklist of the mosses of Europe and Macaronesia. J Bryol 28:198–267

    Article  Google Scholar 

  21. Hoyo Y, Tsuyuzaki S (2014) Habitat differentiation between Drosera anglica and D. rotundifolia in a post-mined peatland, Northern Japan. Wetlands 34:943–953

    Article  Google Scholar 

  22. Ilomets M (1996) Temporal changes of Estonian peatlands and carbon balance. In: Punning J-M (ed) Estonia in the system of global climate change. Institute of Ecology. Publications 4:65–74

  23. Ingerpuu N, Nurkse K, Vellak K (2014) Bryophytes in Estonian mires. Est J Ecol 63(1):3–14

    Article  Google Scholar 

  24. Joosten JHJ (1992) Bog regeneration in The Netherlands: a review. In: Bragg OM, Hulme PD, Ingram HAP, Robertson RA (eds) Peatland Ecosystems and Man: An Impact Assessment. Department of Biological Sciences, University of Dundee, UK pp 367–373

  25. Joosten H (2008) The IMCG Global Peatland Database. http://www.imcg.net/pages/publications/imcg-materials.php?lang=EN. Assessed 20 February 2015

  26. Kalamees R, Püssa K, Zobel K, Zobel M (2012) Restoration potential of the persistent soil seed bank in successional calcareous (alvar) grasslands in Estonia. Appl Veg Sci 15(2):208–218

    Article  Google Scholar 

  27. Kask M (1982) A list of vascular plants of Estonian peatlands. In: Frey T, Masing V, Roosaluste E (eds) Peatland ecosystems. Academy of Sciences of the Estonian SSR, Tallinn, pp 39–49

    Google Scholar 

  28. Konvalinková P, Prach K (2014) Environmental factors determining spontaneous recovery of industrially mined peat bogs: A multi-site analysis. Ecol Eng 69:38–45

    Article  Google Scholar 

  29. Kukk T, Kull T (eds) (2005) Atlas of the Estonian Flora. Institute of Agricultural and Environmental Sciences of the Estonian University of Life Sciences, Tartu

    Google Scholar 

  30. Laberge V, Rochefort L, Poulin M (2013) Ericaceae stabilize peat and foster Sphagnum majus establishment at pool margins in restored peatlands. Aquat Bot 111:1–8

    Article  Google Scholar 

  31. Lavoie C, Marcoux K, Saint-Louis A, Price JS (2005a) The dynamics of a cotton-grass (Eriophurum vaginatum L.) cover expansion in a vacuum-mined peatland, southern Québec, Canada. Wetlands 25(1):64–75

    Article  Google Scholar 

  32. Lavoie C, Saint-Louis A, Lachance D (2005b) Vegetation dynamics on an abandoned vacuum-mined peatland: five years of monitoring. Wetl Ecol Manag 13(6):621–633

    Article  Google Scholar 

  33. Maljanen M, Sigurdsson BD, Gudmundsson J, Óskarsson H, Huttunen JT, Martikainen PJ (2010) Greenhouse gas balances of managed peatlands in the Nordic countries—present knowledge and gaps. Biogeosciences 7:2711–2738

    CAS  Article  Google Scholar 

  34. McCarter CPR, Price JS (2013) The hydrology of the Bois-des-Bel bog peatland restoration: 10-years post-restoration. Ecol Eng 55:73--81

  35. McCarter CPR, Price JS (2014a) Ecohydrology of Sphagnum moss hummocks: mechanisms of capitula water supply and simulated effects of evapotranspiration. Ecohydrology 7(1):33–44

    Article  Google Scholar 

  36. McCarter CPR, Price JS (2014b) The hydrology of the Bois-des-Bel peatland restoration: hydrophysical properties limiting connectivity between regenerated Sphagnum and remnant vacuum harvested peat deposit. Ecohydrology 8(2):173–187

    Article  Google Scholar 

  37. McNeil P, Waddington M (2003) Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. J Appl Ecol 40:354–367

    Article  Google Scholar 

  38. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: wetlands and water synthesis. World Resources Institute, Washington DC

    Google Scholar 

  39. Money RP, Wheeler BD (1999) Some critical questions concerning the restorability of damaged raised bogs. Appl Veg Sci 2(1):107–116

    Article  Google Scholar 

  40. Orru M (1992) Eesti turbavarud (Estonian peat resources). Eesti Geoloogiakeskus, Tallinn

    Google Scholar 

  41. Paal J (ed) (2011) Jääksood, nende kasutamine ja korrastamine. Keskkonnainvesteeringute Keskus & Eesti Turbaliit, VALI trükikoda, Tartu

    Google Scholar 

  42. Paal J, Leibak E (2011) Estonian mires: inventory of habitats. Publication of the Project “Estonian Mires Inventory completion for maintaining biodiversity”. Regio, Tartu

    Google Scholar 

  43. Pakalne M, Strazdina L (eds) (2013) Raised bog management for the biological diversity conservation in Latvia. University of Latvia, Riga

    Google Scholar 

  44. Poulin M, Andersen R, Rochefort L (2013) A new approach for tracking vegetation change after restoration: a case study with peatlands. Restor Ecol 21(3):363–371

    Article  Google Scholar 

  45. Pouliot R, Rochefort L, Karofeld E, Mercier C (2011) Initiation of Sphagnum hummocks in bogs and the presence of vascular plants: is there a link? Acta Oecol 37(4):346–354

    Article  Google Scholar 

  46. Pouliot R, Rochefort L, Karofeld E (2012) Initiation of microtopography in re-vegetated cutover peatlands: evolution of plant species composition. Appl Veg Sci 15(3):369–382

    Article  Google Scholar 

  47. Prach K, Lencová K, Ŕehounková K, Dvořáková H, Jirová A, Konvalinková P, Mudrák O, Novák J, Trnková R (2013) Spontaneous vegetation succession at different central European mining sites: a comparison across seres. Environ Sci Pollut R 20(11):7680–7685

    Article  Google Scholar 

  48. Quinty F, Rochefort L (2003) Peatland restoration guide. Second edition. Canadian Sphagnum Peat Moss Accociation, New Brunswick Department of Natural Resources and Energy, Québec

    Google Scholar 

  49. Ramst R, Orru M (2009) Eesti mahajäetud turbatootmisalade taastaimestumine. Eesti Põlevloodusvarad ja – jäätmed 1:6–7

    Google Scholar 

  50. Robroek BJM, van Ruijven J, Schouten MGC, Breuwer A, Crushell PH, Berendse F, Limpens J (2009) Sphagnum re-introduction in degraded peatlands: the effects of aggregation, species identity and water table. Basic Appl Ecol 10(8):697–706

    Article  Google Scholar 

  51. Rochefort L, Lode E (2006) Restoration of degraded boreal peatlands. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Ecological studies 188. Springer, Berlin Heidelberg, pp 381–423

    Chapter  Google Scholar 

  52. Rochefort L, Nondedeu FI, Boudreau S, Poulin M (2013) Comparing survey methods for monitoring vegetation change through time in a restored peatland. Wetl Ecol Manag 21(1):71–85

    Article  Google Scholar 

  53. Rochefort L, Quinty F, Campeau S, Johnson K, Malterer T (2003) North American approach to the restoration of Sphagnum dominated peatlands. Wetl Ecol Manag 11:3--20

  54. Salm J-O, Kimmel K, Uri V, Mander Ü (2009) Global warming potential of drained and undrained peatlands in Estonia: a synthesis. Wetlands 29(4):1081–1092

    Article  Google Scholar 

  55. Salonen V (1994) Revegetation of harvested peat surfaces in relation to substrate quality. J Veg Sci 5:403–408

    Article  Google Scholar 

  56. Schumann M, Joosten H (2008) Global peatland restoration manual. http://www.imcg.net/media/download_gallery/books/gprm_01.pdf. Assessed 20 February 2015

  57. Söderström L, Urmi E, Váňa J (2007) The distribution of Hepaticae and Anthocerotae in Europe and Macaronesia—update 1–427. Cryptogam Bryol 28(4):299–350

    Google Scholar 

  58. Stoneman R, Brooks S (1997) Conserving bogs. The Management Handbook. The Stationery Office Ltd, Edinburgh

    Google Scholar 

  59. Sundberg S, Rydin H (2002) Habitat requirements for establishment of Sphagnum from spores. J Ecol 90:268–278

    Article  Google Scholar 

  60. Triisberg T, Karofeld E, Paal J (2011) Re-vegetation of block-cut and milled peatlands: an Estonian example. Mires and Peat 8: Article 5, 1–14

  61. Triisberg T, Karofeld E, Paal J (2013) Factors affecting the re-vegetation of abandoned extracted peatlands in Estonia: a synthesis from field and greenhouse studies. Est J Ecol 62(3):192–211

    Article  Google Scholar 

  62. Triisberg T, Karofeld E, Liira J, Orru M, Ramst R, Paal J (2014) Microtopography and properties of residual peat are convenient indicators for restoration planning of abandoned extracted peatlands. Restor Ecol 22(1):31–39

    Article  Google Scholar 

  63. Tuittila ES, Rita H, Vasander H, Laine J (2000) Vegetation patterns around Eriophorum vaginatum L. tussocks in a cut-away peatland in southern Finland. Can J Botany 78:47–58

    Google Scholar 

  64. Van Gaalen KE, Flanagan LB, Peddel DR (2007) Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying water contents. Oecologia 153:19–28

    Article  Google Scholar 

  65. Vasander H, Tuittila E-S, Lode E, Lundin L, Ilomets M, Sallantaus T, Heikkilä R, Pitkänen M-L, Laine J (2003) Status and restoration of peatlands in northern Europe. Wetl Ecol Manag 11(1):51–63

    CAS  Article  Google Scholar 

  66. Vellak K, Ingerpuu N, Karofeld E (2013) Eesti turbasamblad. The Sphagnum mosses of Estonia, Tartu Ülikooli Kirjastus

    Google Scholar 

  67. Verhoven JTA (2014) Wetlands in Europe: perspectives for restoration of a lost paradise. Ecol Eng 66:6–9

  68. Wagner KJ, Gallagher SK, Hayes M, Lawrence BA, Zedler JB (2008) Wetland restoration in the new millennium: do research effort match opportunities? Restor Ecol 16(3):367–372

    Article  Google Scholar 

  69. Wheeler BD, Shaw SC (1995) Restoration of damaged peatlands. Wiley, London

    Google Scholar 

Download references

Acknowledgments

This study was co-financed by the following research projects: SF0180012s09, SF0180025s12, IUT34-7, IUT34-9 and by the EU Regional Development Fund (Centre of Excellence FIBIR) and Kalloveen BvBa. We thank for H. Oosterkamp, workers from AS Kraver and others for their help in the field and R. Burton for proof reading the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edgar Karofeld.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karofeld, E., Müür, M. & Vellak, K. Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia. Environ Sci Pollut Res 23, 13706–13717 (2016). https://doi.org/10.1007/s11356-015-5396-4

Download citation

Keywords

  • Bog-specific species
  • Moss layer transfer method
  • Peatland
  • Plant cover
  • Sphagnum
  • Water table