Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils

Abstract

This is the premier study designed to evaluate the impact of thermal pre-treatment on the availability of polycyclic aromatic hydrocarbons (PAHs) for successive removal by chemical oxidation. Experiments were conducted in two soils having different PAH distribution originating from former coking plant sites (Homécourt, H, and Neuves Maisons, NM) located in northeast of France. Soil samples were pre-heated at 60, 100, and 150 °C for 1 week under inert atmosphere (N2). Pre-heating resulted in slight removal of PAHs (<10 %) and loss of extractable organic matter (EOM). Then, these pre-heated soil samples were subjected to Fenton-like oxidation (H2O2 and magnetite) at room temperature. Chemical oxidation in soil without any pre-treatment showed almost no PAH degradation underscoring the unavailability of PAHs. However, chemical oxidation in pre-heated soils showed significant PAH degradation (19, 29, and 43 % in NM soil and 31, 36, and 47 % in H soil pre-treated at 60, 100, and 150 °C, respectively). No preferential removal of PAHs was observed after chemical oxidation in both soils. These results indicated the significant impact of pre-heating temperature on the availability of PAHs in contaminated soils and therefore may have strong implications in the remediation of contaminated soils especially where pollutant availability is a limiting factor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Achten C, Hofmann T (2009) Native polycyclic aromatic hydrocarbons (PAH) in coals—a hardly recognized source of environmental contamination. Sci Total Environ 407:2461–2473

    Article  CAS  Google Scholar 

  2. Biache C, Ghislain T, Faure P, Mansuy-Huault L (2011) Low temperature oxidation of a coking plant soil organic matter and its major constituents: an experimental approach to simulate a long term evolution. J Hazard Mater 188:221–230

    Article  CAS  Google Scholar 

  3. Biache C, Kouadio O, Lorgeoux C, Faure P (2014) Impact of clay mineral on air oxidation of PAH-contaminated soils. Environ Sci Pollut Res 21:11017–11026

  4. Biache C, Lorgeoux C, Andriatsihoarana S, Colombano S, Faure P (2015) Effect of pre-heating on the chemical oxidation efficiency: implications for the PAH availability measurement in contaminated soils. J Hazard Mater 286:55–63

    Article  CAS  Google Scholar 

  5. Biache C, Mansuy-Huault L, Faure P, Munier-Lamy C, Leyval C (2008) Effects of thermal desorption on the composition of two coking plant soils: impact on solvent extractable organic compounds and metal bioavailability. Environ Pollut 156:671–677

    Article  CAS  Google Scholar 

  6. Bonten LTC, Grotenbuis TC, Rulkens WH (1999) Enhancement of PAH biodegradation in soil by physicochemical pretreatment. Chemosphere 38:3627–3636

    Article  CAS  Google Scholar 

  7. Cuypers C, Grotenhuis T, Joziasse J, Rulkens W (2000) Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environ Sci Technol 34:2057–2063

    Article  CAS  Google Scholar 

  8. European Environment Agency (2012): http://www.eea.europa.eu/data-and-maps/figures/overview-of-contaminants-affecting-soil-and-groundwater-in-europe (Last modified 29 Nov 2012)

  9. Enell A, Reichenberg F, Gr E, Warfvinge P (2005) Desorption kinetics studies on PAH-contaminated soil under varying temperatures. Chemosphere 61:1529–1538

    Article  CAS  Google Scholar 

  10. Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910

    Article  CAS  Google Scholar 

  11. Ferrarese E, Andreottola G, Oprea IA (2008) Remediation of PAH-contaminated sediments by chemical oxidation. J Hazard Mater 152:128–139

    Article  CAS  Google Scholar 

  12. Flotron V, Delteil C, Padellec Y, Camel V (2005) Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process. Chemosphere 59:1427–1437

    Article  CAS  Google Scholar 

  13. Gryzenia J, Cassidy D, Hampton D (2009) Production and accumulation of surfactants during the chemical oxidation of PAH in soil. Chemosphere 77:540–545

    Article  CAS  Google Scholar 

  14. Hanser O, Biache C, Boulangé M, Parant S, Lorgeoux C, Billet D, Michels R, Faure P (2015) Evolution of dissolved organic matter during abiotic oxidation of coal tar—comparison with contaminated soils under natural attenuation. Environ Sci Pollut Res 22:1431–1443

    Article  CAS  Google Scholar 

  15. Jonsson S, Persson Y, Frankki S, van Bavel B, Lundstedt S, Haglund P, Tysklind M (2007) Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton’s reagent: a multivariate evaluation of the importance of soil characteristics and PAH properties. J Hazard Mater 149:86–96

    Article  CAS  Google Scholar 

  16. Kanel SR, Neppolian B, Jung H, Choi H (2004) Comparative removal of polycyclic aromatic hydrocarbons using iron oxide and hydrogen peroxide in soil slurries. Environ Eng Sci 21:741–751

    Article  CAS  Google Scholar 

  17. Kawahara FK, Davila B, Al-Abed SR, Vesper SJ, Ireland JC, Rock S (1995) Polynuclear aromatic hydrocarbon (PAH) release from soil during treatment with Fenton’s Reagent. Chemosphere 31:4131–4142

    Article  CAS  Google Scholar 

  18. Kong SH, Watts RJ, Choi JH (1998) Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere 37:1473–1482

    Article  CAS  Google Scholar 

  19. Laurent F, Cébron A, Schwartz C, Leyval C (2012) Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties. Chemosphere 86:659–664

    Article  CAS  Google Scholar 

  20. Lee LS, Rao PSC, Okuda I (1992) Equilibrium partitioning of polycyclic aromatic hydrocarbons from coal tar into water. Environ Sci Technol 26:2110–2115

    Article  CAS  Google Scholar 

  21. Lundstedt S, Bandowe BAM, Wilcke W, Boll E, Christensen JH, Vila J, Grifoll M, Faure P, Biache C, Lorgeoux C, Larsson M, Frech IK, Ivarsson P, Ricci M (2014) First intercomparison study on the analysis of oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) and nitrogen heterocyclic polycyclic aromatic compounds (N-PACs) in contaminated soil. Trends Analyt Chem 57:83–92

    Article  CAS  Google Scholar 

  22. Lundstedt S, Persson Y, Öberg L (2006) Transformation of PAHs during ethanol-Fenton treatment of an aged gasworks’ soil. Chemosphere 65:1288–1294

    Article  CAS  Google Scholar 

  23. Ndjou’ou AC, Cassidy D (2006) Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil. Chemosphere 65:1610–1615

    Article  CAS  Google Scholar 

  24. O’Carroll D, Sleep B (2009) Role of NAPL thermal properties in the effectiveness of hot water flooding. Transp. Porous Med 79:393–405

    Article  CAS  Google Scholar 

  25. Ouvrard S, Barnier C, Bauda P, Beguiristain T, Biache C, Bonnard M, Caupert C, Cébron A, Cortet J, Cotelle S, Dazy M, Faure P, Masfaraud JF, Nahmani J, Palais F, Poupin P, Raoult N, Vasseur P, Morel JL, Leyval C (2011) In situ assessment of phytotechnologies for multicontaminated soil management. Int J Phytorem 13:245–263

    Article  Google Scholar 

  26. Park J-Y, Kim J-H (2013) Role of sol with iron oxyhydroxide/sodium dodecyl sulfate composites on Fenton oxidation of sorbed phenanthrene in sand. J Environ Manage 126:72–78

    Article  CAS  Google Scholar 

  27. Riding MJ, Doick KJ, Martin FL, Jones KC, Semple KT (2013) Chemical measures of bioavailability/bioaccessibility of PAHs in soil: fundamentals to application. J Hazard Mater 261:687–700

    Article  CAS  Google Scholar 

  28. Rowland SJ, Alexander R, Kagi RI, Jones DM, Douglas AG (1986) Microbial degradation of aromatic components of crude oils: a comparison of laboratory and field observations. Org Geochem 9:153–161

    Article  CAS  Google Scholar 

  29. Sirguey C, de Souza T, e Silva P, Schwartz C, Simonnot M-O (2008) Impact of chemical oxidation on soil quality. Chemosphere 72:282–289

    Article  CAS  Google Scholar 

  30. Totsche KU, Kögel-Knabner I, Haas B, Geisen S, Scheibke R (2003) Preferential flow and aging of NAPL in the unsaturated soil zone of a hazardous waste site: implications for contaminant transport. J Plant Nutr Soil Sci 166:102–110

    Article  CAS  Google Scholar 

  31. Usman M, Faure P, Ruby C, Hanna K (2012a) Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation. Appl Catal B Env 117–118:10–17

    Article  CAS  Google Scholar 

  32. Usman M, Faure P, Ruby C, Hanna K (2012b) Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils. Chemosphere 87:234–240

    Article  CAS  Google Scholar 

  33. Usman M, Faure P, Hanna K, Abdelmoula M, Ruby C (2012c) Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination. Fuel 96:270–276

    Article  CAS  Google Scholar 

  34. Usman M, Faure P, Lorgeoux C, Ruby C, Hanna K (2013) Treatment of hydrocarbon contamination under flow through conditions by using magnetite catalyzed chemical oxidation. Environ Sci Pollut Res 20:22–30

    Article  CAS  Google Scholar 

  35. Viglianti C, Hanna K, de Brauer C, Germain P (2006) Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: experimental study. Environ Pollut 140:427–435

    Article  CAS  Google Scholar 

  36. Volkman JK, Alexander R, Kagi RI, Rowland SJ, Sheppard PN (1984) Biodegradation of aromatic hydrocarbons in crude oils from the Barrow Sub-basin of Western Australia. Org Geochem 6:619–632

    Article  CAS  Google Scholar 

  37. Watts RJ, Bottenberg BC, Hess TF, Jensen MD, Teel AL (1999) Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton’s reactions. Environ Sci Technol 33:3432–3437

    Article  CAS  Google Scholar 

  38. Watts RJ, Stanton PC, Howsawkeng J, Teel AL (2002) Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide. Water Res 36:4283–4292

    Article  CAS  Google Scholar 

  39. Wehrer M, Rennert T, Mansfeldt T, Totsche KU (2011) Contaminants at former manufactured gas plants: sources, properties, and processes. Crit Rev Environ Sci Technol 41:1883–1969

    Article  CAS  Google Scholar 

  40. Williams JA, Bjorøy M, Dolcater DL, Winters JC (1986) Biodegradation in South Texane Eocene oils—effects on aromatics and biomarkers. Org Geochem 10:451–461

    Article  CAS  Google Scholar 

  41. Wu SC, Gschwend PM (1986) Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environ Sci Technol 20:717–725

    Article  CAS  Google Scholar 

  42. Xing B, Pignatello JJ (1997) Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environ Sci Technol 31:792–799

    Article  CAS  Google Scholar 

  43. Xue X, Hanna K, Despas C, Wu F, Deng N (2009) Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH. J Mol Catal A Chem 311:29–35

    Article  CAS  Google Scholar 

  44. Yap CL, Gan S, Ng HK (2011) Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere 83:1414–1430

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors of this manuscript would like to express their gratitude toward Higher Education Commission of Pakistan (HEC) and Centre National de la Recherche Scientifique (CNRS), France, for funding this research and French Scientific Interest Group – Industrial Wasteland (GISFI; www.gisfi.prd.fr) for providing soils from the two coking plant sites.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Usman.

Additional information

Responsible editor: Ester Heath

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Usman, M., Chaudhary, A., Biache, C. et al. Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils. Environ Sci Pollut Res 23, 1371–1380 (2016). https://doi.org/10.1007/s11356-015-5369-7

Download citation

Keywords

  • PAHs
  • Temperature
  • Availability
  • Remediation
  • Fenton oxidation