Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation

Abstract

For effective microbe-assisted bioremediation, metal-resistant plant growth-promoting bacteria (PGPB) must facilitate plant growth by restricting excess metal uptake in plants, leading to prevent its bio-amplification in the ecosystem. The aims of our study were to isolate and characterize copper (Cu)-resistant PGPB from waste water receiving contaminated soil. In addition, we investigated the phytotoxic effect of copper on the lentil plants inoculated with copper-resistant bacteria Providencia vermicola, grown in copper-contaminated soil. Copper-resistant P. vermicola showed multiple plant growth promoting characteristics, when used as a seed inoculant. It protected the lentil plants from copper toxicity with a considerable increase in root and shoot length, plant dry weight and leaf area. A notable increase in different gas exchange characteristics such as A, E, C i , g s , and A/E, as well as increase in N and P accumulation were also recorded in inoculated plants as compared to un-inoculated copper stressed plants. In addition, leaf chlorophyll content, root nodulation, number of pods, 1,000 seed weight were also higher in inoculated plants as compared with non-inoculated ones. Anti-oxidative defense mechanism improved significantly via elevated expression of reactive oxygen species -scavenging enzymes including ascorbate peroxidase, superoxide dismutase, catalase, and guaiacol peroxidase with alternate decrease in malondialdehyde and H2O2 contents, reduced electrolyte leakage, proline, and total phenolic contents suggesting that inoculation of P. vermicola triggered heavy metals stress-related defense pathways under copper stress. Overall, the results demonstrated that the P. vermicola seed inoculation confer heavy metal stress tolerance in lentil plant which can be used as a potent biotechnological tool to cope with the problems of copper pollution in crop plants for better yield.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

PGPB:

plant growth promoting bacteria

Cu:

copper

PGP:

plant growth promoting

A :

net photosynthetic rate

E :

transpiration rate

C i :

internal CO2 concentration

g s :

stomatal conductance

A/E :

water use efficiency

SOD:

superoxide dismutase

CAT:

catalase

GPX:

guaiacol peroxidase

MIC:

minimum inhibitory concentration

MDA:

malondialdehyde

H2O2 :

hydrogen peroxide

TPC:

total phenolic contents

N:

nitrogen

P:

phosphorous

P. vermicola :

Providencia vermicola

References

  1. Aebi H (1974) Catalases. Methods Enzym Anal 2:673–684

    Article  Google Scholar 

  2. Akhtar S, Ali B (2011) Evaluation of rhizobacteria as non-rhizobial inoculants for mung beans. Aust J Crop Sci 5:1723–1729

    CAS  Google Scholar 

  3. Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fert Soils 12:39–45

    Article  CAS  Google Scholar 

  4. Allen E, Grimshaw H, Parkinson J, Quamby C, Roberts J (1986) Chemical analysis. Methods plant ecology. Blackwell Scientific, London, pp 285–344

    Google Scholar 

  5. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  6. Arora N, Kang S, Maheshwari D (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their bio-control potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  7. Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  8. Belimov A, Safronova V, Demchinskaya S, Piluzza G, Bullitta S (2005) Cadmium-tolerant plant growth-promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  9. Bergey DH, Holt JG, Krieg NR, Sneath PHA (1994) Bergey's Manual of Determinative Bacteriology, 9th ed., (Breed RS, Murray EGD and Smith NR, eds.) Williams and Wilkims, Baltimore

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analy biochem 72: 248--254

  11. Bremner J, Mulvaney C (1982) Nitrogen-total. Methods of soil analysis. Part 2. Chemical and Microbiological Properties 595–624

  12. Bruins M, Kapil S, Oehme F (2000) Microbial resistance to metals in the environment. Ecot Environ Saf 45:198–207

    Article  CAS  Google Scholar 

  13. Cambroll J, Mateos-Naranjo E, Redondo-Gomez S, Luque-Palomo M, Figueroa M (2011) Growth, reproductive and photosynthetic responses to copper in the yellow-horned poppy, Glaucium flavum Crantz. Environ Exp Bot 71:57–64

    Article  CAS  Google Scholar 

  14. Cohu CM, Pilon M (2007) Regulation of superoxide dismutase expression by copper availability. Physiol Plant 129:747–755

    Article  CAS  Google Scholar 

  15. Demiral T, Türkan İ (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Article  CAS  Google Scholar 

  16. Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer R, Feller U (2004) Biochemical changes in barley plant safter excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    Article  CAS  Google Scholar 

  17. Dhindsa SR, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot 32:79–91

    Article  CAS  Google Scholar 

  18. Duganath N, Reddy KN, Nagasowjanya J, Sridhar S, Jayaveera KN (2010) Evaluation of phytochemical and in vitro antioxidant activity of Filicium decipiens. Ann Biol Res 1:134–140

  19. Duponnois R, Kisa M, Assigbetse K, Prin Y, Thioulouse J, Issartel M, Moulin P, Lepage M (2006) Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants. Sci Total Environ 370:391–400

    Article  CAS  Google Scholar 

  20. Fiske C, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  21. Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64:459–467

    Article  CAS  Google Scholar 

  22. Gao S, Yan R, Cao M, Yang W, Wang S, Chen F (2008) Effects of copper on growth, antioxidant enzymes and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedling. Plant Soil Environ 54(3):117–122

    CAS  Google Scholar 

  23. Gibbons S, Feris K, McGuirl M, Morales S, Hynninen A, Ramsey P, Gannon J (2011) Use of microcalorimetry to determine the costs and benefits to Pseudomonas putida strain KT2440 of harboring cadmium efflux genes. Appl Environ Microbiol 77(1):108–113

    Article  CAS  Google Scholar 

  24. Gill S, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  25. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  Google Scholar 

  26. Glickman E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    Google Scholar 

  27. González-Mendoza D, Espadas y Gil F, Escoboza-Garcia F, Santamaría JM, Zapata-Perez O (2013) Copper stress on photosynthesis of black mangle (Avicennia germinans). An Acad Bras Cienc 85(2):665–670

    Article  Google Scholar 

  28. Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Func Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  29. Gururani M, Upadhyaya C, Baskar V, Venkatesh J, Nookaraju A, Park S (2012) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in solanum tuberosum through inducing changes in the expression of ros-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258

    Article  CAS  Google Scholar 

  30. Gururani M, Upadhyaya C, Baskar V, Venkatesh J, Nookaraju A, Park S (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in solanum tuberosum through inducing changes in the expression of ros-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32(2):245–258

    Article  CAS  Google Scholar 

  31. Halliwell B, Gutteridge J (1984) Oxygen toxicity, oxygen radical, transition metals and disease. Biochem Int J 219:1–14

    Article  CAS  Google Scholar 

  32. Harley (2014) Laboratory resource guide laboratory exercises in microbiology. 9th edition. McGraw-Hill Education

  33. Huaidong H, Zhihong Y, Danjing Y, Junlan Y, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2012) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965

    Google Scholar 

  34. Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014a) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotox Environ Safe 104:285–293

    Article  CAS  Google Scholar 

  35. Islam F, Yasmeen T, Riaz M, Arif MS, Ali S, Raza SH (2014b) Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotox Environ Safe 110:143–152

    Article  CAS  Google Scholar 

  36. Jakson M (1967) Soil chemical analysis. Prentice Hall of India Ltd, New Delhi

    Google Scholar 

  37. Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani H, Sadaghiani H, Miransari M (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    Article  CAS  Google Scholar 

  38. Janas K, Ska-Tomaszewska J, Rybaczek D, Maszewski J, Posmyk M, Amarowicz R, Kosińska A (2010) The impact of copper ions on growth, lipid peroxidation and phenolic compound accumulation and localization in lentil (Lens culinaris Medic.) seedlings. J Plant Physiol 167:270–276

    Article  CAS  Google Scholar 

  39. Kafel A, Nadgórska-Socha A, Gospodarek J, Babczyńska A, Skowronek M, Kandziora M, Rozpędek K (2010) The effects of Aphis fabae infestation on the antioxidant response and heavy metal content in field grown Philadelphus coronarius plants. Sci Total Environ 408:1111–1119

    Article  CAS  Google Scholar 

  40. Kardas M, Gozen AG, Severcan F (2014) FTIR spectroscopy offers hints towards widespread molecular changes in cobalt-acclimated freshwater bacteria. Aquat Toxicol 155:15–23

    Article  CAS  Google Scholar 

  41. Ke W, Xiong Z, Xie M, Luo Q (2007) Accumulation, subcellular localization and ecophysiological responses to copper stress in two Daucus carota L. populations. Plant Soil 292:291–304

    Article  CAS  Google Scholar 

  42. Khan N, Tuffin M, Stafford W, Cary C, Lacap DC, Pointing SB, Cowan D (2011) Hypolithicmicrobial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biol 34:1657–1668

  43. Kovacik J, Backor M (2008) Phenolic compounds composition and physiological attributes of Matricaria chamomilla grown in copper excess. Environ Exp Bot 62:145–152

    Article  CAS  Google Scholar 

  44. Kumar P, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: The use of plants to remove heavy metals. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  45. Lamb DT, Ming H, Megharaj M, Naidu R (2009) Heavy metal (Cu, Zn, Cd, and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. J Harzad Mater 171:1150–1158

    Article  CAS  Google Scholar 

  46. Li J, McConkey BJ, Cheng Z, Guo S, Glick BR (2013) Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach. J Proteom 84:119–131

    Article  CAS  Google Scholar 

  47. Lima A, Corticeiro S, Figueira E (2006) Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzy Microb Technol 39:763–769

    Article  CAS  Google Scholar 

  48. Lin J, Jiang W, Liu D (2003) Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L.). Biores Technol 86:151–159

    Article  CAS  Google Scholar 

  49. Liu T, Shen C, Wang Y, Huang C, Shi J (2014) New insights into regulation of proteome and polysaccharide in cell wall of Elsholtzia splendens in response to copper stress. Plos One 9(10):1–13

    Google Scholar 

  50. Ma Y, Prasad M, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  Google Scholar 

  51. Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere, 93(7): 1386--1392

  52. Martínez-Alcalá I, Clemente R, Bernal M (2009) Metal availability and chemical properties in the rhizosphere of Lupinus albus L. growing in a high-metal calcareous soil. Water Air Soil Poll 201:283–293

    Article  CAS  Google Scholar 

  53. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  Google Scholar 

  54. McLellan T, Marr ES, Wondrack LM, Subashi TA, Aeed PA, Han S, Xu Z, Wang IK, Maguire BA (2009) A systematic study of 50S ribosomal subunit purification enabling robust crystallization. Acta Crystallo 65:1270–1282

    CAS  Google Scholar 

  55. Mishra S, Srivastava S, Tripathi R, Govindarajan R, Kuriakose S, Arasad M (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  CAS  Google Scholar 

  56. Møller I, Jensen P, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  CAS  Google Scholar 

  57. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  58. Nautiyal C, Srivastava S, Chauhan P (2008) Rhizosphere colonization: molecular determinants from plant-microbe coexistence perspective. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant, microbe coexistence, soil biology series. Springer, Berlin, pp 99–124

    Google Scholar 

  59. Nies D (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  Google Scholar 

  60. Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels. Environ Exp Bot 83:53–61

    Article  CAS  Google Scholar 

  61. Oves M, Khan M, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    Article  CAS  Google Scholar 

  62. Peng H, Yang X, Yang M, Tian S (2006) Responses of antioxidant enzyme system to copper toxicity and copper detoxification in the leaves of Elsholtzia splendens. J Plant Nutr 29:1619–1635

    Article  CAS  Google Scholar 

  63. Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  Google Scholar 

  64. Pinto AP, Alves AS, Candeias AJ, Cardoso AI, de Varennes A, Martins LL, Mourato MP, Gonçalves ML, Mota AM (2009) Cadmium accumulation and antioxidative defences in Brassica juncea L. Czern, Nicotiana tobacum L. and Solanum nigrum L. Int J Environ 89:661–676

    CAS  Google Scholar 

  65. Rajkumar M, Prasad M, Freitas H, Ae N (2009) Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit Rev Biotechnol 29:120–130

    Article  CAS  Google Scholar 

  66. Rajkumar M, Prasad M, Sandhya S, Freitas H (2013) Climate change driven plant-metal-microbe interactions. Environ Int 53:74–86

    Article  CAS  Google Scholar 

  67. Rao L, Perez D, White E (1996) Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 135:1441–1455

    Article  CAS  Google Scholar 

  68. Rascio N, Navari-Izzo F (2011) Heavy metal hyper accumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  Google Scholar 

  69. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  Google Scholar 

  70. Siripornadulsil S, Siripornadulsil W (2013) Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicol Environ Safe 94:94–103

    Article  CAS  Google Scholar 

  71. Sudisha J, Niranjana SR, Umesha S, Prakash HS, Shetty HS (2006) Transmission of seed-borne infection of muskmelon by Didymella bryoniae and effect of seed treatments on disease incidence and fruit yield. Biol Cont 37:196–205

    Article  Google Scholar 

  72. Tak HI, Ahmad, Babalola OO (2013) Advances in the Application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev Environ Contamin Toxicol In Whitacre, D M (Ed). IX, 147 p. 21 illus., 3 illus. Vol. 223

  73. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  74. Vivas A, Biro B, Ruiz-Lozano J, Barea J, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523–1533

    Article  CAS  Google Scholar 

  75. Wang H, Xu R, You L, Zhong G (2013) Characterization of Cu-tolerant bacteria and definition of their role in promotion of growth, Cu accumulation and reduction of Cu toxicity in Triticum aestivum L. Ecotoxicol  Environ safety 94: 1--7

  76. Wang L, Yang X, Ren Z, Hu X, Wang X (2014) Alleviation of photosynthetic inhibition in copper-stressed tomatoes through rebalance of ion content by exogenous nitric oxide. Turk J Bot 38:1312–1317

    Google Scholar 

  77. Wani P, Khan M, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol Appl Pharmacol 55:33–42

    Article  CAS  Google Scholar 

  78. Yang J, Kloepper J, Ryu C (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  Google Scholar 

  79. Yilmaz EI (2003) Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Res Microbiol 154:409–415

    Article  CAS  Google Scholar 

  80. Zaidi S, Usmani S, Singh B, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bio-inoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  Google Scholar 

  81. Zhang LL, He XJ, Chen M, An RD, An XL, Li J (2014) Responses of nitrogen metabolism to copper stress in Luffa cylindrica roots. J Soil Sci Plant Nutr 14(3):616–624

    Google Scholar 

Download references

Acknowledgments

The authors thank the Higher Education Commission of Pakistan for the financial support under project No: PM-IPFP/HRD/HEC/2011/0582.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tahira Yasmeen.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Islam, F., Yasmeen, T., Ali, Q. et al. Copper-resistant bacteria reduces oxidative stress and uptake of copper in lentil plants: potential for bacterial bioremediation. Environ Sci Pollut Res 23, 220–233 (2016). https://doi.org/10.1007/s11356-015-5354-1

Download citation

Keywords

  • Cu-resistant bacteria
  • Metal uptake
  • Plant growth
  • Antioxidation
  • Lentil