Ahmad M, Lee SS, Moon DH, Yang JE, Ok YS (2012) A review of environmental contamination and remediation strategies for heavy metals at shooting range soils. In: Malik A, Grohmann E (Eds.) Environmental protection strategies for sustainable development, strategies for sustainability. New York, Springer, pp. 437–451. doi:10.1007/978-94-007-1591-2_14
Anjos C, Magalhães MC, Abreu MM (2012) Metal (Al, Mn, Pb and Zn) soils extractable reagents for available fraction assessment: comparison using plants, and dry and moist soils from the Braçal abandoned lead mine area, Portugal. J Geochem Explor 113:45–55. doi:10.1016/j.gexplo.2011.07.004
CAS
Article
Google Scholar
Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126
CAS
Google Scholar
Bennett JR, Kaufman CA, Koch CA, Koch I, Sova J et al (2007) Ecological risk assessment of lead contamination at rifle and pistol ranges using techniques to account for site characteristics. Sci Total Environ 374:91–101. doi:10.1016/j.scitotenv.2006.12.040
CAS
Article
Google Scholar
Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney RS (eds) Method of soil analysis: part 2. Chemical and microbiological properties. Agronomy monographs no. 9, 2nd edn. American Society of Agronomy, Madison, pp 595–624
Google Scholar
Cao X, Ma LQ, Chen M, Hardison DW Jr, Harris WG (2003a) Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Sci Total Environ 307:179–189. doi:10.1016/S0048-9697(02)00543-0
CAS
Article
Google Scholar
Cao X, Ma LQ, Chen M, Hardison DW, Harris WG (2003b) Weathering of lead bullets and their environmental effects at outdoor shooting ranges. J Environ Qual 32:526–534. doi:10.2134/jeq2003.5260
CAS
Article
Google Scholar
Chaney RL (1989) Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food chains. In: Bar-Yosef B, Barrow NJ, Goldshmid J (eds) Inorganic contaminants in the vadose zone. Springer, Berlin, pp 140–158
Chapter
Google Scholar
Cheragi M, Lorestani B, Khorasani N, Yousefi N, Karami M (2011) Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals. Biol Trace Elem Res 144:1133–1141. doi:10.1007/s12011-009-8359-0
Article
Google Scholar
Chrastný V, Komárek M, Hájek T (2010) Lead contamination of an agricultural soil in the vicinity of a shooting range. Environ Monit Assess 162:37–46. doi:10.1007/s10661-009-0774-3
Article
Google Scholar
Chung FH (1974) Quantitative interpretation of X-ray diffraction patterns. I. Matrix-flushing method of quantitative multicomponent analysis. J Appl Crystallogr 7:513–519. doi:10.1107/S0021889874010375
Google Scholar
Conesa HM, Wieser M, Studer B, González-Alcaraz MN, Schulin R (2012) A critical assessment of soil amendments (slaked lime/acidic fertilizer) for the phytomanagement of moderately contaminated shooting range soils. J Soils Sediments 12:565–575. doi:10.1007/s11368-012-0478-0
CAS
Article
Google Scholar
Cotter-Howells JD, Champness PE, Charnock JM (1999) Mineralogy of Pb-P grains in the roots of Agrostis capillaris L. by ATEM and EXAFS. Mineral Mag 63:777–789. doi:10.1180/002646199548880
CAS
Article
Google Scholar
Craig JR, Edwards D, Rimstidt JD, Scanlon PF, Collins TK et al (2002) Lead distribution on a public shotgun range. Environ Geol 41:873–882. doi:10.1007/s00254-001-0478-7
CAS
Article
Google Scholar
De Koe T (1994) Agrostis castellana and Agrostis delicatula on heavy metal and arsenic enriched sites in NE Portugal. Sci Total Environ 145(1-2):103–109. doi:10.1016/0048-9697(94)90300-X
Article
Google Scholar
Eriksson CP, Holmgren P (1996) Estimating stone and boulder content in forest soils—evaluating the potential of surface penetration methods. Catena 28:121–134. doi:10.1016/S0341-8162(96)00031-8
CAS
Article
Google Scholar
Expert Panel on Soil (2003) Manual on methods and criteria for harmonized sampling, assessment monitoring and analysis of the effects of air pollution on forests. Part IIIa, Sampling and analysis of soil. Int. co-operative programme on assessment and monitoring of air pollution effects on forests. Institute for Forestry and Game Management, Belgium
Feng MH, Shan XQ, Zhang SH, Wen B (2005) Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat. Chemosphere 59:939–949. doi:10.1016/j.chemosphere.2004.11.056
CAS
Article
Google Scholar
Guitart R, Mateo R (2006) El empleo de Plomo en deportes como causa de intoxicación y de contaminación. Apuntes de Ciencia y Tecnología 21:36–42 (in Spanish)
Google Scholar
Hardison DW Jr, Ma LQ, Luongo T, Harris WG (2004) Lead contamination in shooting range soils from abrasion of lead bullets and subsequent weathering. Sci Total Environ 328:175–183. doi:10.1016/j.scitotenv.2003.12.013
CAS
Article
Google Scholar
Hartikainen H, Kerko E (2009) Lead in various chemical pools in soil depth profiles on two shooting ranges of different age. Boreal Environ Res 14 (suppl A.):61-69. doi: http://www.borenv.net/BER/pdfs/ber14/ber14A-061.pdf
Hashimoto Y (2013) Field and laboratory assessments on dissolution and fractionation of Pb from spent and unspent shots in the rhizosphere soil. Chemosphere 93:2894–2900. doi:10.1016/j.chemosphere.2013.08.095
CAS
Article
Google Scholar
Hendershot WH, Duquette M (1986) A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci Soc Am J 50:605–608. doi:10.2136/sssaj1986.03615995005000030013x
Article
Google Scholar
Houba VJG, Temminghoff EJM, Gaikhorst GA, Van Vark W (2000) Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Commun Soil Sci Plant 31:1299–1396. doi:10.1080/00103620009370514
CAS
Article
Google Scholar
Kabata-Pendias A (2010) Trace elements in soils and plants 4th Ed. CRC Press. http://www.crcnetbase.com/isbn/9781420093704
Kachout SS, Mansoura AB, Mechergui R, Leclerc JC, Rejeb MN et al (2012) Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J Sci Food Agric 92:336–342. doi:10.1002/jsfa.4581
CAS
Article
Google Scholar
Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley L (2011) Efficiency of greenwaste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48. doi:10.1016/j.jhazmat.2011.04.025
CAS
Article
Google Scholar
Knechtenhofer LA, Xifra IO, Scheinost AC, Fluhler H, Kretzschmar R (2003) Fate of heavy metals in a strongly acidic shooting-range soil: small-scale metal distribution and its relation to preferential water flow. J Plant Nutr Soil Sci 166:84–92. doi:10.1002/jpln.200390017
CAS
Article
Google Scholar
Lago-Vila M, Arenas-Lago D, Andrade L, Vega FA (2014) Phytoavailable content of metals in soils from copper mine tailings (Touro mine, Galicia, Spain). J Geochem Explor 147:159–166. doi:10.1016/j.gexplo.2014.07.001
CAS
Article
Google Scholar
Lin Z (1996) Secondary mineral phases of metallic lead in soils of shooting ranges from Örebro County, Sweden. Environ Geol 27:370–375. doi:10.1007/BF00766707
CAS
Article
Google Scholar
Lindsay WL, Norwell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428. doi:10.2136/sssaj1978.03615995004200030009x
CAS
Article
Google Scholar
Lobb AJ (2006) Potential for PAH contamination from clay target debris at shooting sites: review of literature on occurrence of site contamination from clay targets. Report No. U06/81. 18 June 2006. Environment Canterbury. New Zealand. http://ecan.govt.nz/publications/Reports/PotentialForPAHcontamination_U0681.pdf Accessed 4 February 2015
Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y et al (2001) A fern that hyperaccumulates arsenic. Nature 409:579. doi:10.1038/35054664
CAS
Article
Google Scholar
Ma LQ, Hardison DW Jr, Harris WG, Cao X, Zhou Q (2007) Effects of soil property and soil amendment on weathering of abraded metallic Pb in shooting ranges. Water Air Soil Pollut 187:297–307. doi:10.1007/s11270-006-9198-7
Article
Google Scholar
Macías F, Calvo de Anta R (2009) Niveles Genéricos de Referencia de Metales Pesados y Otros Elementos Traza en Suelos de Galicia. Consellería de Medio Ambiente e Desenvolvemento Sostible. Xunta de Galicia, Santiago de Compostela, Spain (in Spanish) http://solos.medioambiente.xunta.es/solos/documents/librongr.pdf Accessed 22 February 2015
Malcová R, Vosátka M, Gryndler M (2003) Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Appl Soil Ecol 23:55–67. doi:10.1016/S0929-1393(02)00160-9
Article
Google Scholar
McCutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. New Jersey, John Wiley & Sons, Hoboken, New Jersey: Wiley-Interscience, Inc.
Meers E, Samson R, Tack FMG, Ruttens A, Vandegehuchte M et al (2007) Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ Exp Bot 60:385–396. doi:10.1016/j.envexpbot.2006.12.010
CAS
Article
Google Scholar
Mench M, Schwitzguébel JP, Schroeder P, Bert V, Gawronski S et al (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–890. doi:10.1007/s11356-009-0252-z
CAS
Article
Google Scholar
Menzies NW, Donn MJ, Kopittke PM (2007) Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environ Pollut 145:121–130. doi:10.1016/j.envpol.2006.03.021
CAS
Article
Google Scholar
Miretzky P, Fernandez-Cirelli A (2008) Phosphates for Pb immobilization in soils: a review. Environ Chem Lett 6:121–133. doi:10.1007/s10311-007-0133-y
CAS
Article
Google Scholar
Nolan AL, Lombi E, McLaughlin MJ (2003) Metal bioaccumulation and toxicity in soils—why bother with speciation? Aust J Chem 56:77–91. doi:10.1071/CH02226
CAS
Article
Google Scholar
Novozamsky I, Lexmond THM, Houba VJG (1993) A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. Int J Environ An Ch 51:47–58. doi:10.1080/03067319308027610
CAS
Article
Google Scholar
Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of soil analysis, part 2. Agron. Mongr.9, 2nd edn. ASA and SSSA, Madison, pp 403–430
Google Scholar
Peijnenburg WJG, Jager T (2003) Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicol Environ Safe 56:63–77. doi:10.1016/S0147-6513(03)00051-4
CAS
Article
Google Scholar
Perroy RL, Belby CS, Mertens CJ (2014) Mapping and modeling three-dimensional lead contamination in the wetland sediments of a former trap-shooting range. Sci Total Environ 487:72–81. doi:10.1016/j.scitotenv.2014.03.102
CAS
Article
Google Scholar
Pueyo M, López-Sánchez JF, Rauret G (2004) Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Anal Chim Acta 504:217–226. doi:10.1016/j.aca.2003.10.047
CAS
Article
Google Scholar
Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils, vol 68, NATO Sciences Series. Springer, New York, pp 25–52
Chapter
Google Scholar
Rooney CP, McLaren RG, Cresswell RJ (1999) Distribution and phytoavailability of lead in a soil contaminated with lead shot. Water Air Soil Pollut 116:535–548. doi:10.1023/A:1005181303843
CAS
Article
Google Scholar
Rooney CP, McLaren RG, Condron LM (2007) Control of lead solubility in soil contaminated with lead shot: effect of soil pH. Environ Pollut 149:149–257. doi:10.1016/j.envpol.2007.01.009
CAS
Article
Google Scholar
Scheetz CD, Rimstidt JD (2009) Dissolution, transport, and fate of lead on a shooting range in the Jefferson National Forest near Blacksburg, VA, USA. Environ Geol 58:655–665. doi:10.1007/s00254-008-1540-5
CAS
Article
Google Scholar
Schwertfeger DM, Hendershot WH (2009) Determination of effective cation exchange capacity and exchange acidity by a one-step BaCl2 method. Soil Sci Soc Am J 73(3):737–743. doi:10.2136/sssaj2008.0009
CAS
Article
Google Scholar
SIGPAC (2014) Sistema de Información Geográfica de Parcelas Agrícolas. Ministerio de Agricultura Pesca y Alimentación. http://sigpac.magrama.es/fega/visor/ Accessed 14 January 2015
Strømseng AE, Ljønes M, Bakka L, Mariussen E (2009) Episodic discharge of lead, copper and antimony from a Norwegian small arm shooting range. J Environ Monit 11:1259–1267. doi:10.1039/b823194j
Article
Google Scholar
Thomas VG (2013) Lead-free hunting rifle ammunition: product availability, price, effectiveness, and role in global wildlife conservation. Ambio 42:737–745. doi:10.1007/s13280-012-0361-7
Article
Google Scholar
Thomas VG, Anderson DA (2014) Banning the use of lead shot—options for the International Olympic Committee. Environ Policy Law 43:300–306
Google Scholar
Turpeinen R, Salminen J, Kairesalo T (2000) Mobility and bioavailability of lead in contaminated boreal forest soil. Environ Sci Technol 34:5152–5156. doi:10.1021/es001200d
CAS
Article
Google Scholar
Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17. doi:10.1007/s10311-009-0268-0
CAS
Article
Google Scholar
Vangronsveld J, Herzing R, Weyens N, Boulet J, Adriaesen K et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794. doi:10.1007/s11356-009-0213-6
CAS
Article
Google Scholar
Vantelon S, Lanzirotti A, Scheinost AC, Kretzschmar R (2005) Spatial distribution and speciation of lead around corroding bullets in a shooting range soil studied by micro-X-ray fluorescence and absorption spectroscopy. Environ Sci Technol 39:4808–4815. doi:10.1021/es0482740
CAS
Article
Google Scholar
Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 34:29–38. doi:10.1097/00010694-193401000-00003
Article
Google Scholar
USEPA (2001) Lead; identification of dangerous levels of lead; final rule. 40 CFR part 745. Washington, DC: United States Environmental Protection Agency. http://epa.gov/superfund/lead/products/rule.pdf Accessed 21 February 2015
Xu D, Zhou P, Zhan J, Gao Y, Dou C et al (2013) Assessment of trace metal bioavailability in garden soils and health risks via consumption of vegetables in the vicinity of Tongling mining area, China. Ecotox Environ Saf 90:103–111. doi:10.1016/j.ecoenv.2012.12.018
CAS
Article
Google Scholar
Yin X, Saha UK, Ma LQ (2010) Effectiveness of best management practices in reducing Pb-bullet weathering in a shooting range in Florida. J Hazard Mater 179:895–900. doi:10.1016/j.jhazmat.2010.03.089
CAS
Article
Google Scholar
Yoon J, Cao X, Zhou O (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464. doi:10.1016/j.scitotenv.2006.01.016
CAS
Article
Google Scholar
Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43. doi:10.1023/A:1022530217289
CAS
Article
Google Scholar