Environmental Science and Pollution Research

, Volume 23, Issue 7, pp 6014–6023 | Cite as

Impact of acid mine drainages on surficial waters of an abandoned mining site

  • M L García-Lorenzo
  • J. Marimón
  • M C Navarro-Hervás
  • C. Pérez-Sirvent
  • M J Martínez-Sánchez
  • José Molina-Ruiz
Contamination related to anthropic activities. Characterization and remediation

Abstract

Weathering of sulphide minerals produces a great variety of efflorescences of soluble sulphate salts. These minerals play an important role for environmental pollution, since they can be either a sink or a source for acidity and trace elements. This paper aims to characterise surface waters affected by mining activities in the Sierra Minera of Cartagena-La Union (SE, Spain). Water samples were analysed for trace metals (Zn, Cd, Pb, Cu, As and Fe), major ions (Na+, K+, Ca2+ and Mg2+) and anions (F, Cl, NO3, CO32−, SO42−) concentrations and were submitted to an “evaporation-precipitation” experiment that consisted in identifying the salts resulting from the evaporation of the water aliquots sampled onsite. Mineralogy of the salts was studied using X-ray diffraction and compared with the results of calculations using VISUAL MINTEQ. The study area is heavily polluted as a result of historical mining and processing activities that has produced large amount of wastes characterised by a high trace elements content, acidic pH and containing minerals resulting from the supergene alteration of the raw materials. The mineralogical study of the efflorescences obtained from waters shows that magnesium, zinc, iron and aluminium sulphates predominate in the acid mine drainage precipitates. Minerals of the hexahydrite group have been quantified together with minerals of the rozenite group, alunogen and other phases such as coquimbite and copiapite. Calcium sulphates correspond exclusively to gypsum. In a semiarid climate, such as that of the study area, these minerals contribute to understand the response of the system to episodic rainfall events. MINTEQ model could be used for the analysis of waters affected by mining activities but simulation of evaporation gives more realistic results considering that MINTEQ does not consider soluble hydrated salts.

Keywords

Acid mine drainage Sulphate efflorescences Trace elements Mining activity Environmental minerals X-ray diffraction 

References

  1. Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14:1139–1145CrossRefGoogle Scholar
  2. Alpers CN, Blowes DW, Nordstrom DK, Jambor JL (1994) Secondary minerals and acid mine water chemistry. In: Jambor JL, Blowes DW (eds) Environmental Geochemistry of Sulfide Mine-Wastes, vol 22, Mineral Association of Canada Short Course., pp 247–270Google Scholar
  3. Alpers CN, Jambor JL, Nordstrom DK (eds) (2000) Sulfate minerals: crystallography, geochemistry and environmental significance. Mineralogical Society of America, Washington, DCGoogle Scholar
  4. Banks D, Younger PL, Arnesen RT, Iversen ER, Banks SB (1997) Mine-water chemistry: the good, the bad and the ugly. Environ Geol 32:157–174CrossRefGoogle Scholar
  5. Buckby T, Black S, Coleman ML, Hodson ME (2003) Fe-sulphate-rich evaporative mineral precipitates from the Rio Tinto, southwest Spain. Mineral Mag 67:263–278CrossRefGoogle Scholar
  6. Carbone C, Di Benedetto F, Marescotti P, Martinelli A, Sangregorio C, Cipriani C, Lucchetti G, Romanelli M (2005) Genetic evolution of nanocrystalline Fe oxide and oxyhydroxide assemblages from the Libiola Mine (eastern Liguria, Italy): structural and microstructural investigations. Eur J Mineral 17:785–795CrossRefGoogle Scholar
  7. Carbone C, Marescotti P, Lucchetti G, Martinelli A, Basso R, Cauzid J (2012) Migration of selected elements of environmental concern from unaltered pyrite-rich mineralizations to Fe-rich alteration crusts. J Geochem Explor 114:109–117CrossRefGoogle Scholar
  8. Carbone C, Dinelli E, Marescotti P, Gasparotto G, Lucchetti G (2013) The role of AMD secondary minerals in controlling environmental pollution: indications from bulk leaching tests. J Geochem Explor 132:188–200CrossRefGoogle Scholar
  9. Cravotta CA (1994) Secondary iron-sulfate minerals as sources of sulfate and acidity: geochemical evaluation of acidic groundwater at a reclaimed surface coal mine in Pennsylvania. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation, vol. 550, American Chemical Society Symposium Series., pp 345–364Google Scholar
  10. García Lorenzo ML, Martínez-Sánchez MJ, Pérez-Sirvent C (2014) Application of a plant bioassay for the evaluation of ecotoxicological risks of heavy metals in sediments affected by mining activities. J Soils Sediments 14:1753–1765CrossRefGoogle Scholar
  11. García-Lorenzo ML, Pérez-Sirvent C, Martínez-Sánchez MJ, Molina-Ruiz J (2012) Trace elements contamination in an abandoned mining site in a semiarid zone. J Geochem Explor 113:23–35CrossRefGoogle Scholar
  12. Garrido MM (2002) Aportación a la especiación de Fe (II) y Fe (III) en medio sulfúrico. University of Murcia, Doctoral ThesisGoogle Scholar
  13. Gieré R, Sidenko NV, Lazareva EV (2003) The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Appl Geochem 18:1347–1359CrossRefGoogle Scholar
  14. Hammarstrom JM, Seal RR II, Meier AL, Kornfeld JM (2005) Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chem Geol 215:407–431CrossRefGoogle Scholar
  15. Herrera G, Tomás R, Lopez-Sanchez JM, Delgado J, Mallorqui JJ, Duque S, Mulas J (2007) Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Environ Geol 90:148–159CrossRefGoogle Scholar
  16. Hudson-Edwards KA, Schell C, Macklin MG (1999) Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Appl Geochem 14:1015–1030CrossRefGoogle Scholar
  17. Jambor JL (2003) Mine-waste mineralogy and mineralogical perspectives of acid-base accounting. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes, vol 31. Mineralogical Association of Canada, Nepean, pp 117–145Google Scholar
  18. Jambor JL, Nordstrom DK, Alpers CN (2000) Metal sulfate salts from sulfide mineral oxidation. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Sulfate minerals; crystallography, geochemistry and environmental significance, vol 40. Mineralogical Society of America, Washington, DC, pp 303–350Google Scholar
  19. López Ruíz J, Cebriá JM, Doblas M (2002) Cenozoic volcanism I: the Iberian Peninsula. In: Gibbons W, Moreno MT (eds) The geology of Spain. Geological Society, London, pp 417–438Google Scholar
  20. Lottermoser B (2007) Mine wastes—characterization, treatment and environmental impacts. Springer, BerlinGoogle Scholar
  21. Manteca JI, Ovejero G (1992) Los yacimientos de Zn, Pb, Ag-Fe del distrito minero La Unión-Cartagena. In: García Guinea J, Martínez Frías J (eds) Recursos Minerales de España. Consejo Superior de Investigaciones Científicas, Madrid, pp 1085–1102Google Scholar
  22. Marescotti P, Carbone C, Comodi P, Frondini F, Lucchetti G (2012) Mineralogical and chemical evolution of ochreous precipitates from the Libiola Fe-Cu-sulfide mine (Eastern Liguria, Italy). Appl Geochem 27:577–589CrossRefGoogle Scholar
  23. Martín-Ramos JD (2004) Using XPowder: a software package for powder X-ray diffraction analysis. D.L. GR-1001/04. 84-609-1497-6 (Spain. http://www.xpowder.com (accessed 18 June 2015).
  24. Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193CrossRefGoogle Scholar
  25. Navarro-Hervás MC, Pérez-Sirvent C, Martínez-Sánchez MJ, García-Lorenzo ML, Molina J (2012) Weathering processes in waste materials from a mining area in a semiarid zone. Appl Geochem 27:1991–2000CrossRefGoogle Scholar
  26. Nieto JM, Sarmiento AM, Cánovas CR, Olías M, Ayora C (2013) Acid mine drainage in the Iberian Pyrite Belt: 1. Hydrochemical characteristics and pollutant load of the Tinto and Odiel rivers. Environ Sci Pollut Res 20(11):7509–7519CrossRefGoogle Scholar
  27. Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc Natl Acad Sci 96:3455–3462CrossRefGoogle Scholar
  28. Oen IS, Fernández JC, Manteca JI (1975) The lead-zinc and associated ores of La Unión, Sierra de Cartagena, Spain. Econ Geol 70:1259–1278CrossRefGoogle Scholar
  29. Pentreath RJ (1994) The discharge of waters from active and abandoned mines. In: Harrison RM, Hester RE (eds) Mining and its environmental impact. Royal Society of Chemistry, Cambridge, pp 121–132CrossRefGoogle Scholar
  30. Perez-Sirvent C, Martínez-Sánchez MJ, García-Rizo C (1998) Lead mobilization in calcareous soils. In: Iskandar IK, Selim HM (eds) Fate and transport of heavy metals in the vadose zone. Lewis Publishers, Washington, DC, pp 177–197Google Scholar
  31. Rull F, Guerrero J, Venegas G, Gázquez F, Medina J (2014) Spectroscopic Raman study of sulphate precipitation sequence in Rio Tinto mining district (SW Spain). Environ Sci Pollut Res 21(11):6783–6792CrossRefGoogle Scholar
  32. Sanchéz J, Pamo EL, Santofimia E, Aduvire O, Reyes J, Barettino G (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20:1320–1356CrossRefGoogle Scholar
  33. Simate GS, Ndlovu S (2014) Acid mine drainage: challenges and opportunities. J Environ Chem Engineering 2:1785–1803CrossRefGoogle Scholar
  34. Valente TM, Leal Gomes CL (2009) Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Sci Total Environ 407:1135–1152CrossRefGoogle Scholar
  35. Valente T, Grande JA, de la Torre ML, Santisteban M, Cerón JC (2013) Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain). Appl Geochem 39:11–25CrossRefGoogle Scholar
  36. Zhang Y, Jiang J, Chen M (2008) MINTEQ modelling for evaluating the leaching behavior of heavy metals in MSWI fly ash. J Environ Sci 20:1398–1402CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M L García-Lorenzo
    • 1
  • J. Marimón
    • 2
  • M C Navarro-Hervás
    • 2
  • C. Pérez-Sirvent
    • 2
  • M J Martínez-Sánchez
    • 2
  • José Molina-Ruiz
    • 3
  1. 1.Department of Petrology and Geochemistry, Faculty of GeologyUniversity Complutense of MadridMadridSpain
  2. 2.Department of Agricultural Chemistry, Geology and Pedology, Faculty of ChemistryUniversity of MurciaMurciaSpain
  3. 3.Department of Physical Geography, Human Geography and Regional Geographical Analysis, Faculty of GeographyUniversity of MurciaMurciaSpain

Personalised recommendations