Skip to main content
Log in

Subacute static magnetic field exposure in rat induces a pseudoanemia status with increase in MCT4 and Glut4 proteins in glycolytic muscle

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effect of subacute exposure to static magnetic fields (SMF) on hematological and muscle biochemical parameters in rats. Male Wistar rats, daily exposed to SMF, were exposed to SMF (128 mT, 1 h/day) during 15 consecutive days. SMF-exposed rats showed a significant decrease in red blood cell (RBC) count, hemoglobin (Hb), and hematocrit (Ht) values compared to sham-exposed rats (p < 0.05). Concomitant decreases of plasma iron level against increase in transferrin amount were also observed after SMF exposure (p < 0.0.05). In postprandial condition, SMF-exposed rats presented higher plasma lactate (p < 0.01). Additionally, SMF exposure increased monocarboxylate transporters (MCT4) and glucose transporter 4 (Glut4)’s contents only in glycolytic muscle (p < 0.05). SMF exposure induced alteration of hematological parameters; importantly, we noticed a pseudoanemia status, which seems to affect tissue oxygen delivery. Additionally, SMF exposure seems to favor the extrusion of lactate from the cell to the blood compartment. Given that, these arguments advocate for an adaptive response to a hypoxia status following SMF exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelmelek H, Molnar A, Servais S, Cottet-Emard JM, Pequignot JM, Favier R, Sakly M (2006) Skeletal muscle HSP72 and norepinephrine response to static magnetic field in rat. J Neural Transm 113(7):821–827

    Article  CAS  Google Scholar 

  • Ali FM, Mohamed WS, Mohamed MR (2003) Effect of 50 Hz, 0.2 mT magnetic field on RBC properties and heart functions of albino rats. Bioelectromagnetics 24(8):535–545

    Article  Google Scholar 

  • Andrews NC (2000) Iron metabolism: iron deficiency and iron overload. Annu Rev Genomics Hum Genet 1(75–98):1527–8204

    Google Scholar 

  • Atef MM, MS A e-B, el-Kareem A, Aida S, Fadel MA (1995) Effects of a static magnetic field on haemoglobin structure and function. Int J Biol Macromol 17(2):105–111

    Article  CAS  Google Scholar 

  • Avogaro A, Toffolo G, Miola M, Valerio A, Tiengo A, Cobelli C, Del Prato S (1996) Intracellular lactate- and pyruvate-interconversion rates are increased in muscle tissue of non-insulindependent diabetic individuals. J Clin Invest 98(1):108–115

    Article  CAS  Google Scholar 

  • Berg H (1993) Electrostimulation of cell metabolism by low frequency electric and electromagnetic fields. Bioelectrochem Bioenerg 31(1):1–25

    Article  CAS  Google Scholar 

  • Binhi VN (2002) Magnetobiology: underlying physical problems. Academic, San Diego

    Google Scholar 

  • Cabrales LB, Ciria HC, Bruzón RP, Quevedo MS, Céspedes MC, Salas MF (2001) ELF magnetic field effects on some hematological and biochemical parameters of peripheral blood in mice. Electromagn Biol Med 20(2):185–191

    Google Scholar 

  • Cakir DU, Yokus B, Akdag MZ, Sert C, Mete N (2009) Alterations of hematological variations in rats exposed to extremely low frequency magnetic fields (50 Hz). Arch Med Res 40(5):352–356

    Article  CAS  Google Scholar 

  • Chater S, Abdelmelek H, Pequignot JM, Sakly M, Rhouma KB (2006) Effects of sub-acute exposure to static magnetic field on hematologic and biochemical parameters in pregnant rats. Electromagn Biol Med 25(3):35–144

    Article  Google Scholar 

  • DiGirolamo M, Newby FD, Lovejoy J (1992) Lactate production in adipose tissue: a regulated function with extra-adipose implications. FASEB J 6(7):2405–2412

    CAS  Google Scholar 

  • Djordjevich DM, De Luka SR, Milovanovich ID, Jankovic S, Stefanovic S, Veskovic-Moracanin S, Cirkovic S, Ilic AZ, Ristic-Djurovic JL, Trbovich AM (2012) Hematological parameters’ changes in mice subchronically exposed to static magnetic fields of different orientations. Ecotoxicol Environ Safety 81(1):98–105

    Article  CAS  Google Scholar 

  • Elferchichi M, Abdelmelek H, Sakly M (2007) Effects of sub-acute exposure to static magnetic field on iron status and hematopoiesis in rats. Turk J Haematol 24(2):64–68

    CAS  Google Scholar 

  • Elferchichi M, Mercier J, Coisy-Quivy M, Metz L, Lajoix AD, Gross R, Belguith H, Abdelmelek H, Sakly M, Lambert K (2010) Effects of exposure to a 128-mT static magnetic field on glucose and lipid metabolism in serum and skeletal muscle of rats. Arch Med Res 41(5):30914

    Article  Google Scholar 

  • Elferchichi M, Mercier J, Bourret A, Gross R, Lajoix AD, Belguith H, Abdelmelek H, Sakly M, Lambert K (2011) Is static magnetic field exposure a new model of metabolic alteration? Comparison with Zucker rats. Int J Radiat Biol 87(5):48390

    Article  Google Scholar 

  • Eydoux N, Dubouchaud H, Py G, Granier P, Prefaut C, Mercier J (2000a) Lactate transport in rat sarcolemmal vesicles after a single bout of submaximal exercise. Int J Sports Med 21(6): 393–9

  • Eydoux N, Py G, Lambert K, Dubouchaud H, Prefaut C, Mercier J (2000b) Training does not protect against exhaustive exercise-induced lactate transport capacity alterations. AJP Endocrinology and Metabolism. 278 (6): 1045–52

  • Feychting M (2005) Health effects of static magnetic fields: a review of the epidemiological evidence. Prog Biophys Mol Biol 87(2–3):241–246

    Article  Google Scholar 

  • Gutmann I, Wahlefeld M (1974) L (þ) lactate determination with lactate dehydrogenase and NAD. Methods of enzymatic analysis. Academic, New York, pp 1464–1472

    Google Scholar 

  • Hashish AH, El-Missiry MA, Abdelkader HI, Abou-Saleh RH (2008) Assessment of biological changes of continuous whole body exposure to static magnetic field and extremely low frequency electromagnetic fields in mice. Ecotoxicol Environ Safety 71(3):895–902

    Article  CAS  Google Scholar 

  • Hassan NS, Abdelkawi SA (2010) Changes in molecular structure of hemoglobin in exposure to 50 Hz magnetic fields. Nature 8(8):236–243

    Google Scholar 

  • Havas M (2008) Dirty electricity elevates blood sugar among electrically sensitive diabetics and may explain brittle diabetes. Electromagn Biol Med 27(2):135–146

    Article  CAS  Google Scholar 

  • James JH, Luchette FA, McCarter FD, Fischer JE (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354(9177):505–508

    Article  CAS  Google Scholar 

  • Juel C, Halestrap AP (1999) Lactate transport in skeletal muscle: role and regulation of the monocarboxylate transporter. J Physiol 517(3):633–642

    Article  CAS  Google Scholar 

  • Kowalczuk CI, Sienkiewiczk ZJ, Saunders RD (1991) Biological effects of exposure to non-ionizing electromagnetic fields and radiation I. Static electric and magnetic fields. National Radiological Protection Board, NRPB-R238, Didcot, UK

    Google Scholar 

  • Kula B, Drozdz M (1996) A study of magnetic field effects on fibroblasts cultures, part 2: The evaluation of effects of static and extremely low frequency (ELF) magnetic fields on free radical processes in fibroblasts cultures. Bioeletrochem Bioenerg 39(1):27–30

    Article  CAS  Google Scholar 

  • Lombardi AM, Fabris R, Bassetto F, Serra R, Leturque A, Federspil G, Girard J, Vettor R (1999) Hyperlactatemia reduces muscle glucose uptake and GLUT-4 mRNA while increasing (E1alpha) PDH gene expression in rat. AJP 276(5 Pt 1):922–929

    Google Scholar 

  • McCullagh KJ, Poole RC, Halestrap AP, O’Brien M, Bonen A (1996) Role of the lactate transporter (MCT1) in skeletal muscles. AJP 271(1):143–150

    Google Scholar 

  • McRobbie DW (2012) Occupational exposure in MRI. Br J Radiol 85(1012):293–312

    Article  CAS  Google Scholar 

  • Miller BF, Fattor JA, Jacobs KA, Horning MA, Navazio F, Lindinger MI, Brooks GA (2002) Lactate and glucose interactions during rest and exercise in men: Effect of exogenous lactate infusion. J Physiol 544(3):963–975

    Article  CAS  Google Scholar 

  • Osbakken M, Griffith J, Taczanowsky PA (1986) Gross morphologic, histologic, hematologic, and blood chemistry study of adult and neonatal mice chronically exposed to high magnetic fields. Magn Reson Med 3(4):502–517

    Article  CAS  Google Scholar 

  • Py G, Lambert K, Perez-Martin A, Raynaud E, Prefaut C, Mercier J (2001) Impaired sarcolemmal vesicle lactate uptake and skeletal muscle MCT1 and MCT4 expression in obese Zucker rats. AJP Endocrinology and Metabolism 281(6):1308–1315

    Google Scholar 

  • Py G, Lambert K, Milhavet O, Eydoux N, Prefaut C, Mercier J (2002) Effects of streptozotocin-induced diabetes on markers of skeletal muscle metabolism and monocarboxylate transporter 1 to monocarboxylate transporter 4 transporters. Metabolism 51(7):807–813

    Article  CAS  Google Scholar 

  • Repacholi MH, Greenebaum B (1999) Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 20(3):133–160

    Article  CAS  Google Scholar 

  • Roth DA, Brooks GA (1990) Lactate transport is mediated by a membrane-bound carrier in rat skeletal muscle sarcolemmal vesicles. Arch Biochem Biophys 279(2):377–385

    Article  CAS  Google Scholar 

  • Sano H, Peck GR, Kettenbach AN, Gerber SA, Lienhard GE (2011) Insulin-stimulated GLUT4 protein translocation in adipocytes requires the Rab10 guanine nucleotide exchange factor Dennd4C. J Biol Chem 286(19):165–415

    Article  Google Scholar 

  • Saunders R (2005) Static magnetic fields: animal studies. Prog Biophys Mol Biol 87(2–3):225–239

    Article  Google Scholar 

  • Schenck JF (2000) Safety of strong, static magnetic fields. J Magn Reson Imaging 12(1):2–19

    Article  CAS  Google Scholar 

  • Ullah MS, Davies AJ, Halestrap AP (2006) The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J Biol Chem 281(14):9030–9903

    Article  CAS  Google Scholar 

  • Vettor R, Lombardi AM, Fabris R, Serra R, Pagano C, Macor C, Federspil G (2000) Substrate competition and insulin action in animal models. Int J Obes Relat Metab Disord 24(2):22–24

    Article  Google Scholar 

  • Vijayakumar MV, Bhat MK (2012) Real time qualitative and quantitative GLUT4 translocation assay. Methods Enzymol 505(14):257–271

    Article  CAS  Google Scholar 

  • World Health Organisation (2006) Static fields, Environmental Health Criteria. World Health Organization 20(1):349, http://www.who.int/pehemf/publications/EHC_232

    Google Scholar 

  • Zaghloul MS (2011) Effects of chronic exposure to static electromagnetic field on certain histological aspects of the spleen and some haematological parameters in Albino Rats. Am J Sci 7(8):383–394

    Google Scholar 

Download references

Acknowledgments

This work has been supported by PHYMEDEXP, INSERM U1046, CNRS UMR 9214, Université de Montpellier.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miryam Elferchichi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elferchichi, M., Mercier, J., Ammari, M. et al. Subacute static magnetic field exposure in rat induces a pseudoanemia status with increase in MCT4 and Glut4 proteins in glycolytic muscle. Environ Sci Pollut Res 23, 1265–1273 (2016). https://doi.org/10.1007/s11356-015-5336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5336-3

Keywords

Navigation