Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review

Abstract

Drought and salinity are the main abiotic stresses limiting crop yield and quality worldwide. Improving food production in drought- and salt-prone areas is the key to meet the increasing food demands in near future. It has been widely reported that silicon (Si), a second most abundant element in soil, could reduce drought and salt stress in plants. Here, we reviewed the emerging role of Si in enhancing drought and salt tolerance in plants and highlighted the mechanisms through which Si could alleviate both drought and salt stress in plants. Silicon application increased plant growth, biomass, photosynthetic pigments, straw and grain yield, and quality under either drought or salt stress. Under both salt and drought stress, the key mechanisms evoked are nutrient elements homeostasis, modification of gas exchange attributes, osmotic adjustment, regulating the synthesis of compatible solutes, stimulation of antioxidant enzymes, and gene expression in plants. In addition, Si application decreased Na+ uptake and translocation while increased K+ uptake and translocation under salt stress. However, these mechanisms vary with plant species, genotype, growth conditions, duration of stress imposed, and so on. This review article highlights the potential for improving plant resistance to drought and salt stress by Si application and provides a theoretical basis for application of Si in saline soils and arid and semiarid regions worldwide. This review article also highlights the future research needs about the role of Si under drought stress and in saline soils.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abbas T, Balal RM, Shahid MA, Pervez MA, Ayyub CM, Aqueel MA, Javaid MM (2015) Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiol Plant 37:1–15

    CAS  Article  Google Scholar 

  2. Abbasi GH, Akhtar J, Anwar-ul-Haq M, Ali S, Chen ZH, Malik W (2014) Exogenous potassium differentially mitigates salt stress in tolerant and sensitive maize hybrids. Pak J Bot 46:135–146

    CAS  Google Scholar 

  3. Abbasi GH, Akhtar J, Ahmad R, Jamil M, Anwar-ul-haq M, Ali S, Ijaz M (2015a) Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant Growth Regul 76:111–125

    CAS  Article  Google Scholar 

  4. Abbasi GH, Akhtar J, Anwar-ul-Haq M, Malik W, Ali S, Chen Z, Zhang G (2015b) Morpho-physiological and micrographic characterization of maize hybrids under NaCl and Cd stress. Plant Growth Regul 75:115–122

    CAS  Article  Google Scholar 

  5. Abdalla MM (2011a) Beneficial effects of diatomite on growth, the biochemical contents and polymorphic DNA in Lupinus albus plants grown under water stress. Agric Biol J N Am 2:207–220

    CAS  Article  Google Scholar 

  6. Abdalla MM (2011b) Impact of diatomite nutrition on two Trifolium alexandrinum cultivars differing in salinity tolerance. Int J Plant Physiol Biochem 3:233–246

    CAS  Google Scholar 

  7. Adrees M, Ali S, Iqbal M, Bharwana SA, Siddiqi Z, Farid M, Ali Q, Saeed R, Rizwan M (2015a) Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. Ecotoxicol Environ Saf 122:1–8

    CAS  Article  Google Scholar 

  8. Adrees M, Ali S, Rizwan M, Rehman MZ, Ibrahim M, Abbas F, Farid M, Qayyum MK, Irshad MK (2015b) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    CAS  Article  Google Scholar 

  9. Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998) Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci 1:96–103

    Article  Google Scholar 

  10. Ahmad F, Rahmatullah Aziz T, Maqsood MA, Tahir MA, Kanwal S (2007) Effect of silicon application on wheat (Triticum aestivum L.) growth under water deficiency stress. Emir J Food Agric 19:01–07

    Article  Google Scholar 

  11. Ahmed M, Hassen FU, Khurshid Y (2011a) Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agric Water Manag 98:1808–1812

    Article  Google Scholar 

  12. Ahmed M, Hassen FU, Qadeer U, Aslam MA (2011b) Silicon application and drought tolerance mechanism of sorghum. Afr J Agric Res 6:594–607

    Google Scholar 

  13. Ahmed M, Asif M, Hassan FU (2014a) Augmenting drought tolerance in sorghum by silicon nutrition. Acta Physiol Plant 36:473–483

    CAS  Article  Google Scholar 

  14. Ahmed M, Hassan FU, Asif M (2014b) Amelioration of drought in sorghum (Sorghum bicolor L.) by silicon. Commun Soil Sci Plant Anal 45:470–486

    CAS  Article  Google Scholar 

  15. Ahmed M, Qadeer U, Ahmed ZI, Hassan FU (2015) Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. Arch Agron Soil Sci. doi:10.1080/03650340.2015.1048235

    Google Scholar 

  16. Al-aghabary K, Zhu Z, Shi Q (2005) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115

    Article  CAS  Google Scholar 

  17. Alexandre A, Meunier JD, Colin F, Koud JM (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682

    CAS  Article  Google Scholar 

  18. Ali A, Basra SM, Ahmad R, Wahid A (2009) Optimizing silicon application to improve salinity tolerance in wheat. Soil Environ 2:136–144

    Google Scholar 

  19. Ali A, Basra SM, Hussain S, Iqbal J (2012a) Increased growth and changes in wheat mineral composition through calcium silicate fertilization under normal and saline field conditions. Chil J Agric Res 72:98–103

    Article  Google Scholar 

  20. Ali A, Basra SM, Hussain S, Iqbal J, Bukhsh MAAHA, Sarwar M (2012b) Salt stress alleviation in field crops through nutritional supplementation of silicon. Pak J Nutr 11:637–655

    CAS  Article  Google Scholar 

  21. Ali A, Basra SM, Iqbal J, Hussain S, Subhani MN, Sarwar M, Haji A (2012c) Silicon mediated biochemical changes in wheat under salinized and non-salinized solution cultures. Afr J Biotechnol 11:606–615

    CAS  Google Scholar 

  22. Ali A, Tahir M, Amin M, Basra SMA, Maqbool M, Lee JD (2013a) Si induced stress tolerance in wheat (Triticum aestivum L.) hydroponically grown under water deficit conditions. Bulg J Agric Sci 19:951–957

    Google Scholar 

  23. Ali MAM, Ramezani A, Far SM, Sadat KA, Moradi-Ghahderijani M, Jamian SS (2013b) Application of silicon ameliorates salinity stress in sunflower (Helianthus annuus L.) plants. Int J Agric Crop Sci 6:1367–1372

    CAS  Google Scholar 

  24. Ali S, Farooq MA, Yasmeen T, Hussain S, Arif MS, Abbas F, Bharwana SA, Zhang GP (2013c) The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicol Environ Saf 89:66–72

    CAS  Article  Google Scholar 

  25. Ali S, Bharwana SA, Rizwan M, Farid M, Kanwal S, Ali Q, Ibrahim M, Gill RA, Khan MD (2015a) Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum L.) through lowering of Cr uptake and improved antioxidant defense system. Environ Sci Pollut Res 22:10601–10609

    CAS  Article  Google Scholar 

  26. Ali S, Chaudhary A, Rizwan M, Anwar HT, Adrees M, Farid M, Irshad MK, Hayat T, Anjum SA (2015b) Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environ Sci Pollut Res 22:10669–10678

    CAS  Article  Google Scholar 

  27. Amin M, Ahmad R, Basra SM, Murtaza G (2014) Silicon induced improvement in morpho-physiological traits of maize (Zea mays L.) under water deficit. Pak J Agric Sci 51:187–196

    Google Scholar 

  28. Amirossadat Z, Ghehsareh AM, Mojiri A (2012) Impact of silicon on decreasing of salinity stress in greenhouse cucumber (Cucumis sativus L.) in soilless culture. J Biol Environ Sci 6:171–174

    Google Scholar 

  29. Anjum SA, Wang L, Farooq M, Xue L, Ali S (2011) Fulvic acid application improves the maize performance under well-watered and drought conditions. J Agron Crop Sci 197:409–417

    CAS  Article  Google Scholar 

  30. Ashraf M, Ahmad R, Afzal M, Tahir MA, Kanwal S, Maqsood MA (2009) Potassium and silicon improve yield and juice quality in sugarcane (Saccharum officinarum L.) under salt stress. J Agron Crop Sci 195:284–291

    CAS  Article  Google Scholar 

  31. Ashraf M, Afzal M, Ahmed R, Mujeeb F, Sarwar A, Ali L (2010a) Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil 326:381–391

    CAS  Article  Google Scholar 

  32. Ashraf M, Ahmad R, Bhatti AS, Afzal M, Sarwar A, Maqsood MA, Kanwal S (2010b) Amelioration of salt stress in sugarcane (Saccharum officinarum L.) by supplying potassium and silicon in hydroponics. Pedosphere 20:153–162

    CAS  Article  Google Scholar 

  33. Bélanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp tritici). Phytopathology 93:402–412

    Article  Google Scholar 

  34. Bodner G, Nakhforoosh A, Kaul HP (2015) Management of crop water under drought: a review. Agron Sustain Dev 35:401–442

    Article  Google Scholar 

  35. Bybordi A (2014) Interactive effects of silicon and potassium nitrate in improving salt tolerance of wheat. Int J Agric 13:1889–1899

    Article  CAS  Google Scholar 

  36. Casey WH, Kinrade SD, Knight CTG, Rains DW, Epstein E (2004) Aqueous silicate complexes in wheat, Triticum aestivum L. Plant Cell Environ 27:51–54

    CAS  Article  Google Scholar 

  37. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    CAS  Article  Google Scholar 

  38. Chen W, Yao X, Cai K, Chen J (2011) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res 142:67–76

    CAS  Article  Google Scholar 

  39. Chen D, Yin L, Deng X, Wang S (2014) Silicon increases salt tolerance by influencing the two-phase growth response to salinity in wheat (Triticum aestivum L.). Acta Physiol Plant 36:2531–2535

    CAS  Article  Google Scholar 

  40. Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818

    CAS  Article  Google Scholar 

  41. Cornelis JT, Titeux H, Ranger J, Delvaux B (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342:369–378

    CAS  Article  Google Scholar 

  42. Côté-Beaulieu C, Chain F, Menzies JG, Kinrade SD, Bélanger RR (2009) Absorption of aqueous inorganic and organic silicon compounds by wheat and their effect on growth and powdery mildew control. Environ Exp Bot 65:155–161

    Article  CAS  Google Scholar 

  43. Crusciol CA, Pulz AL, Lemos LB, Soratto RP, Lima GP (2009) Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Sci 49:949–954

    CAS  Article  Google Scholar 

  44. da Silva Lobato AK, de Oliveira Neto CF, Marques DJ, Guedes EMS (2013) Silicon: a benefic element to improve tolerance in plants exposed to water deficiency. INTECH Open Access Publisher

  45. Ding YF, Liang YC, Zhu J, Li ZJ (2007) Effects of silicon on plant growth, photosynthetic parameters and soluble sugar content in leaves of wheat under drought stress. Plant Nutr Fert Sci 13:471–478

  46. Emam MM, Khattab HE, Helal NM, Deraz AE (2014) Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Aust J Crop Sci 8:596–605

    Google Scholar 

  47. Eneji AE, Inanaga S, Muranaka S, Li J, Hattori T, An P, Tsuji W (2008) Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J Plant Nutr 31:355–365

    CAS  Article  Google Scholar 

  48. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17

    CAS  Article  Google Scholar 

  49. Epstein E, Bloom JA (2005) Mineral nutrition of plants: principles and perspective, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  50. Eraslan F, Inal A, Pilbeam DJ, Gunes A (2008) Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regul 55:207–219

    CAS  Article  Google Scholar 

  51. Esmaeili S, Salehi H, Eshghi S (2015) Silicon ameliorates the adverse effects of salinity on turfgrass growth and development. J Plant Nutr. doi:10.1080/01904167.2015.1069332

    Google Scholar 

  52. Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Huang J (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul. doi:10.1007/s10725-014-0013-y

    Google Scholar 

  53. Farshidi M, Abdolzadeh A, Sadeghipour HR (2012) Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants. Acta Physiol Plant 34:1779–1788

    CAS  Article  Google Scholar 

  54. Gao X, Zou C, Wang L, Zhang F (2005) Silicon improves water use efficiency in maize plants. J Plant Nutr 27:1457–1470

    Article  CAS  Google Scholar 

  55. Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647

    CAS  Article  Google Scholar 

  56. Garg N, Bhandari P (2015) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul. doi:10.1007/s10725-015-0099-x

    Google Scholar 

  57. Gharineh MH, Karmollachaab A (2013) Effect of silicon on physiological characteristics wheat growth under water-deficit stress induced by PEG. Int J Agron Plant Prod 4:1543–1548

    CAS  Google Scholar 

  58. Gong H, Chen K (2012) The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol Plant 34:1589–1594

    CAS  Article  Google Scholar 

  59. Gong HJ, Chen KM, Chen GC, Wang SM, Zhang CL (2003) Effects of silicon on growth of wheat under drought. J Plant Nutr 26:1055–1063

    CAS  Article  Google Scholar 

  60. Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    CAS  Article  Google Scholar 

  61. Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979

    CAS  Article  Google Scholar 

  62. Gong HJ, Chen KM, Zhao ZG, Chen GC, Zhou WJ (2008) Effects of silicon on defence of wheat against oxidative stress under drought at different developmental stages. Biol Plant 52:592–596

    CAS  Article  Google Scholar 

  63. Gunes A, Pilbeam DJ, Inal A, Bagci EG, Coban S (2007) Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stress. J Plant Interact 2:105–113

    CAS  Article  Google Scholar 

  64. Gunes A, Kadioglu YK, Pilbeam DJ, Inal A, Coban S, Aksu A (2008a) Influence of silicon on sunflower cultivars under drought stress, II: essential and nonessential element uptake determined by polarized energy dispersive X‐ray fluorescence. Commun Soil Sci Plant Anal 39:1904–1927

    CAS  Article  Google Scholar 

  65. Gunes A, Pilbeam DJ, Inal A, Coban S (2008b) Influence of silicon on sunflower cultivars under drought stress, I: growth, antioxidant mechanisms, and lipid peroxidation. Commun Soil Sci Plant Anal 39:1885–1903

    CAS  Article  Google Scholar 

  66. Guntzer F, Keller C, Meunier JD (2011) Benefits of plan silicon for crops: a review. Agron Sustain Dev 32:201–213

    Article  Google Scholar 

  67. Guntzer F, Keller C, Poulton PR, McGrath SP, Meunier JD (2012) Long term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted. Plant Soil 352:173–184

    CAS  Article  Google Scholar 

  68. Guo Q, Meng L, Mao P, Tian X (2013) Role of silicon in alleviating salt-induced toxicity in white clover. Bull Environ Contam Toxicol 91:213–216

    CAS  Article  Google Scholar 

  69. Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. doi:10.1155/2014/701596

    Google Scholar 

  70. Gurmani AR, Bano A, Najeeb U, Zhang J, Khan SU, Flowers TJ (2013a) Exogenously applied silicate and abscisic acid ameliorates the growth of salinity stressed wheat (‘Triticum aestivum’ L) seedlings through Na+ exclusion. Aust J Crop Sci 7:1123–1130

    Google Scholar 

  71. Gurmani AR, Bano A, Ullah N, Khan H, Jahangir M, Flowers TJ (2013b) Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and bypass flow in rice (‘Oryza sativaindica). Aust J Crop Sci 7:1219–1226

    Google Scholar 

  72. Habibi G, Norouzi F, Hajiboland R (2014) Silicon alleviates salt stress in pistachio plants. Prog Biol Sci 4:189–202

    Google Scholar 

  73. Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117

    CAS  Article  Google Scholar 

  74. Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N–Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87–90

    Google Scholar 

  75. Hajiboland R, Cheraghvareh L (2014) Influence of Si supplementation on growth and some physiological and biochemical parameters in salt-stressed tobacco (Nicotiana rustica L.) plants. J Sci Islam Rep Iran 25:205–217

    Google Scholar 

  76. Hamayun M, Sohn EY, Khan SA, Shinwari ZK, Khan AL, Lee IJ (2010) Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pak J Bot 42:1713–1722

    CAS  Google Scholar 

  77. Hameed A, Sheikh MA, Jamil A, Basra SMA (2013) Seed priming with sodium silicate enhances seed germination and seedling growth in wheat (Triticum aestivum L.) under water deficit stress induced by polyethylene glycol. Pak J Life Soc Sci 11:19–24

    Google Scholar 

  78. Hashemi A, Abdolzadeh A, Sadeghipour HR (2010) Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Sci Plant Nutr 56:244–253

    CAS  Article  Google Scholar 

  79. Hattori T, Inanaga S, Araki H, An P, Morita S, Luxová M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plant 123:459–466

    CAS  Article  Google Scholar 

  80. Hellal FA, Abdelhameid M, Abo-Basha DM, Zewainy RM (2012) Alleviation of the adverse effects of soil salinity stress by foliar application of silicon on faba bean (Vicia faba L.). J Appl Sci Res 8:4428–4433

    CAS  Google Scholar 

  81. Hernandez-Apaolaza L (2014) Can silicon partially alleviate micronutrient deficiency in plants? A review. Planta 240:447–458

    CAS  Article  Google Scholar 

  82. Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046

    CAS  Article  Google Scholar 

  83. Hubbard M, Germida J, Vujanovic V (2012) Fungal endophytes improve wheat seed germination under heat and drought stress. Botany 90:137–149

    Article  Google Scholar 

  84. Hussein MM, Abou-Baker NH (2014) Growth and mineral status of moringa plants as affected by silicate and salicylic acid under salt stress. Int J Plant Soil Sci Tarakeswar India 3:163–177

    Article  Google Scholar 

  85. Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    CAS  Article  Google Scholar 

  86. Jabeen N, Abbas Z, Iqbal M, Rizwan M, Jabbar A, Farid M, Ali S, Ibrahim M, Abbas F (2015) Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch Agron Soil Sci. doi:10.1080/03650340.2015.1082032

    Google Scholar 

  87. Kafi M, Rahimi Z (2011) Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.). Soil Sci Plant Nutr 57:341–347

    CAS  Article  Google Scholar 

  88. Kafi M, Nabati J, Zare Mehrjerdi M (2011) Effect of salinity and silicon application on oxidative damage of sorghum [Sorghum bicolor (l.) Moench]. Pak J Bot 43:2457–2462

    CAS  Google Scholar 

  89. Kardoni F, Mosavi SJS, Parande S, Torbaghan ME (2013) Effect of salinity stress and silicon application on yield and component yield of faba bean (Vicia faba). Int J Agric Crop Sci 6:814–818

    CAS  Google Scholar 

  90. Karmollachaab A, Bakhshandeh A, Gharineh MH, Moradi Telavat MR, Fathi G (2013) Effect of silicon application on physiological characteristics and grain yield of wheat under drought stress condition. Int J Agron Plant Prod 4:30–37

    Google Scholar 

  91. Kaya C, Tuna L, Higgs D (2006) Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr 29:1469–1480

    CAS  Article  Google Scholar 

  92. Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta 241:847–860

    CAS  Article  Google Scholar 

  93. Khattab HI, Emam MA, Emam MM, Helal NM, Mohamed MR (2014) Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biol Plant 58:265–273

    CAS  Article  Google Scholar 

  94. Khoshgoftarmanesh AH, Khodarahmi S, Haghighi M (2014) Effect of silicon nutrition on lipid peroxidation and antioxidant response of cucumber plants exposed to salinity stress. Arch Agron Soil Sci 60:639–653

    CAS  Article  Google Scholar 

  95. Kim YH, Khan AL, Waqas M, Shim JK, Kim DH, Lee KY, Lee IJ (2014) Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J Plant Growth Regul 33:137–149

    CAS  Article  Google Scholar 

  96. Kochanová Z, Jašková K, Sedláková B, Luxová M (2014) Silicon improves salinity tolerance and affects ammonia assimilation in maize roots. Biologia 69:1164–1171

    Article  CAS  Google Scholar 

  97. Kovda VA (1973) The bases of learning about soils. Moscow, Nayka, 2 v

  98. Kurdali F, Mohammad AC, Ahmad M (2013) Growth and nitrogen fixation in silicon and/or potassium fed chickpeas grown under drought and well watered conditions. J Stress Physiol Biochem 9:385–406

    Google Scholar 

  99. Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60

    CAS  Article  Google Scholar 

  100. Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee IJ (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agrofor Syst 80:333–340

    Article  Google Scholar 

  101. Li R, Shi F, Fukuda K, Yang Y (2010) Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.). Soil Sci Plant Nutr 56:725–733

    CAS  Article  Google Scholar 

  102. Li H, Zhu Y, Hu Y, Han W, Gong H (2015) Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol Plant 37:1–9

    Article  CAS  Google Scholar 

  103. Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    CAS  Article  Google Scholar 

  104. Liang Y, Zhang W, Chen Q, Ding R (2005) Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 53:29–37

    CAS  Article  Google Scholar 

  105. Liang Y, Zhang W, Chen Q, Liu Y, Ding R (2006) Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 57:212–219

    CAS  Article  Google Scholar 

  106. Liang X, Wang H, Hu Y, Mao L, Sun L, Dong T, Nan W, Bi Y (2015) Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission. Plant Cell Rep 34:331–343

    CAS  Article  Google Scholar 

  107. Liu P, Yin L, Deng X, Wang S, Tanaka K, Zhang S (2014) Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J Exp Bot. doi:10.1093/jxb/eru220

    Google Scholar 

  108. Liu P, Yin L, Wang S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51

    CAS  Article  Google Scholar 

  109. Lux A, Luxová M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant 115:87–92

    CAS  Article  Google Scholar 

  110. Lux A, Luxová M, Abe J, Tanimoto E, Hattoriand T, Inanaga S (2003) The dynamics of silicon deposition in the sorghum root endodermis. New Phytol 158:437–441

    CAS  Article  Google Scholar 

  111. Ma JF, Takahashi E (2002) Soil, fertiliser, and plant silicon research in Japan. Elsevier, Amsterdam

    Google Scholar 

  112. Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057

    CAS  Article  Google Scholar 

  113. Ma CC, Li QF, Gao YB, Xin TR (2004a) Effects of silicon application on drought resistance of cucumber plants. Soil Sci Plant Nutr 50:623–632

    Article  Google Scholar 

  114. Ma JF, Mitani N, Nagao S, Konishi S, Tamai K, Iwashita T, Yano M (2004b) Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol 136:3284–3289

    CAS  Article  Google Scholar 

  115. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    CAS  Article  Google Scholar 

  116. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    CAS  Article  Google Scholar 

  117. Ma JF, Yamaji N, Mitani-Ueno N (2011) Transport of silicon from roots to panicles in plants. Proc Jpn Acad Ser B 87:377–385

    CAS  Article  Google Scholar 

  118. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    CAS  Article  Google Scholar 

  119. Mateos-Naranjo E, Andrades-Moreno L, Davy AJ (2013) Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol Biochem 63:115–121

    CAS  Article  Google Scholar 

  120. Meharg C, Meharg AA (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot 120:8–17

    CAS  Article  Google Scholar 

  121. Milne CJ, Laubscher CP, Ndakidemi PA, Marnewick JL, Rautenbach F (2012) Salinity induced changes in oxidative stress and antioxidant status as affected by applications of silicon in lettuce (Lactuca sativa). Int J Agric Biol 14:763–768

    CAS  Google Scholar 

  122. Ming DF, Pei ZF, Naeem MS, Gong HJ, Zhou WJ (2012) Silicon alleviates PEG‐induced water‐deficit stress in upland rice seedlings by enhancing osmotic adjustment. J Agron Crop Sci 198:14–26

    CAS  Article  Google Scholar 

  123. Mitani N, Yamaji N, Ma JF (2009) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12

    CAS  Article  Google Scholar 

  124. Moussa HR (2006) Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int J Agric Biol 8:293–297

    CAS  Google Scholar 

  125. Muneer S, Jeong BR (2015) Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersicon esculentum L.) plants towards silicon efficiency. Plant Growth Regul 1–14. doi:10.1007/s10725-015-0045-y

  126. Muneer S, Park YG, Manivannan A, Soundararajan P, Jeong BR (2014) Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress. Int J Mol Sci 15:21803–21824

    CAS  Article  Google Scholar 

  127. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  Article  Google Scholar 

  128. Murillo-Amador B, Yamada S, Yamaguchi T, Rueda‐Puente E, Ávila‐Serrano N, García‐Hernández JL, Nieto‐Garibay A (2007) Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. J Agron Crop Sci 193:413–421

    CAS  Article  Google Scholar 

  129. Mutava RN, Prasad PVV, Tuinstra MR, Kofoid KD, Yu J (2011) Characterization of sorghum genotypes for traits related to drought tolerance. Field Crop Res 123:10–18

    Article  Google Scholar 

  130. Nabati J, Kafi M, Zare Mehrjerdi M (2013) Effect of salinity and silicon application on photosynthetic characteristics of sorghum (Sorghum bicolor L). Int J Agric Sci 3:483–492

    Google Scholar 

  131. Nolla A, Faria RJ, Korndorfer GH, Silva TRB (2012) Effect of silicon on drought tolerance of upland rice. J Food Agric Environ 10:269–272

    CAS  Google Scholar 

  132. Noman A, Ali S, Naheed F, Ali Q, Farid M, Rizwan M, Irshad MK (2015) Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Arch Agron Soil Sci. doi:10.1080/03650340.2015.1028379

    Google Scholar 

  133. Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci. doi:10.3389/fpls.2014.00086

    Google Scholar 

  134. Parande S, Zamani GR, Zahan MHS, Ghader M (2013) Effects of silicon application on the yield and component of yield in the common bean (Phaseolus vulgaris) under salinity stress. Int J Agron Plant Prod 4:1574–1579

    CAS  Google Scholar 

  135. Parveen N, Ashraf M (2010) Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (Zea mays L.) cultivars grown hydroponically. Pak J Bot 42:1675–1684

    CAS  Google Scholar 

  136. Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115

    CAS  Article  Google Scholar 

  137. Pereira TS, da Silva Lobato AK, Tan DKY, da Costa DV, Uchoa EB, do Nascimento Ferreira R, Silva Guedes EM (2013) Positive interference of silicon on water relations, nitrogen metabolism, and osmotic adjustment in two pepper (Capsicum annuum) cultivars under water deficit. Aust J Crop Sci 7:1064–1071

    Google Scholar 

  138. Putra ETS, Issukindarsyah T, Purwanto BH (2015) Physiological responses of oil palm seedlings to the drought stress using boron and silicon applications. J Agron. doi:10.3923/ja.2015

    Google Scholar 

  139. Qiu L, Wu D, Ali S, Cai S, Dai F, Jin X, Wu F, Zhang GP (2011) Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theor Appl Gene 122:695–703

    CAS  Article  Google Scholar 

  140. Rains DW, Epstein E, Zasoski RJ, Aslam M (2006) Active silicon uptake by wheat. Plant Soil 280:223–228

    CAS  Article  Google Scholar 

  141. Ranjan R (2015) Adapting to catastrophic water scarcity in agriculture through social networking and inter-generational occupational transitioning. J Nat Resour Policy Res 7:71–92

    Article  Google Scholar 

  142. Rizwan M, Meunier JD, Miche H, Keller C (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater 209–210:326–334

    Article  CAS  Google Scholar 

  143. Rohanipoor A, Norouzi M, Moezzi A, Hassibi P (2013) Effect of silicon on some physiological properties of maize (Zea mays) under salt stress. J Biol Environ Sci 7:71–79

    Google Scholar 

  144. Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    CAS  Article  Google Scholar 

  145. Sahebi M, Hanafi M M, Siti Nor Akmar A, Rafii MY, Azizi P, Tengoua F, Shabanimofrad, M (2015) Importance of silicon and mechanisms of biosilica formation in plants. BioMed Res Int Article ID 396010

  146. Saqib M, Zörb C, Schubert S (2008) Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Funct Plant Biol 35:633–639

    CAS  Article  Google Scholar 

  147. Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, Chen Y (2014) Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morphophysiological functions. Sci World J. doi:10.1155/2014/368694

    Google Scholar 

  148. Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108

    CAS  Article  Google Scholar 

  149. Savant NK, Datnoff LE, Snyder GH (1997) Depletion of plant available silicon in soils: a possible cause of declining rice yields. Commun Soil Sci Plant Anal 28:1245–1252

    CAS  Article  Google Scholar 

  150. Shahbaz M, Ashraf M, Akram NA, Hanif A, Hameed S, Joham S, Rehman R (2011) Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). Acta Physiol Plant 33:1113–1122

    CAS  Article  Google Scholar 

  151. Shahid MA, Balal RM, Pervez MA, Abbas T, Aqeel MA, Javaid MM, Garcia-sanchez F (2015) Foliar spray of phyto-extracts supplemented with silicon: an efficacious strategy to alleviate the salinity-induced deleterious effects in pea (Pisum sativum L.). Turk J Bot 39:408–419

    CAS  Article  Google Scholar 

  152. Shahzad M, Zörb C, Geilfus CM, Mühling KH (2013) Apoplastic Na+ in Vicia faba leaves rises after short‐term salt stress and is remedied by silicon. J Agron Crop Sci 199:161–170

    CAS  Article  Google Scholar 

  153. Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167:1248–1252

    CAS  Article  Google Scholar 

  154. Shi Y, Wang Y, Flowers TJ, Gong H (2013) Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. J Plant Physiol 170:847–853

    CAS  Article  Google Scholar 

  155. Shi Y, Zhang Y, Yao H, Wu J, Sun H, Gong H (2014) Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol Biochem 78:27–36

    CAS  Article  Google Scholar 

  156. Siddiqui MH, Al‐Whaibi MH, Faisal M, Al Sahli AA (2014) Nano‐silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437

    CAS  Article  Google Scholar 

  157. Sivanesan I, Jeong BR (2014) Silicon promotes adventitious shoot regeneration and enhances salinity tolerance of Ajuga multiflora Bunge by altering activity of antioxidant enzyme. Scientific World J Volume 2014, Article ID 521703

  158. Sommer M, Kaczorek D, Kuzyakov Y, Breuer T (2006) Silicon pools and fluxes in soils and landscapes: a review. J Plant Nutr Soil Sci 169:310–329

    CAS  Article  Google Scholar 

  159. Sonobe K, Hattori T, An P, Tsuji W, Eneji AE, Kobayashi S, Inanaga S (2010) Effect of silicon application on sorghum root responses to water stress. J Plant Nutr 34:71–82

    Article  CAS  Google Scholar 

  160. Soundararajan P, Manivannan A, Park YG, Muneer S, Jeong BR (2015) Silicon alleviates salt stress by modulating antioxidant enzyme activities in Dianthus caryophyllus ‘Tula’. Hortic Environ Biotechnol 56:233–239

    CAS  Article  Google Scholar 

  161. Soylemezoglu G, Demir K, Inal A, Gunes A (2009) Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci Hortic 123:240–246

    CAS  Article  Google Scholar 

  162. Tahir MA, Rahmatullah Aziz T, Ashraf M (2010) Wheat genotypes differed significantly in their response to silicon nutrition under salinity stress. J Plant Nutr 33:1658–1671

    CAS  Article  Google Scholar 

  163. Tahir MA, Aziz T, Rahmatullah (2011) Silicon-induced growth and yield enhancement in two wheat genotypes differing in salinity tolerance. Commun Soil Sci Plant Anal 42:395–407

    CAS  Article  Google Scholar 

  164. Tahir MA, Aziz T, Farooq M, Sarwar G (2012) Silicon-induced changes in growth, ionic composition, water relations, chlorophyll contents and membrane permeability in two salt-stressed wheat genotypes. Arch Agron Soil Sci 58:247–256

    CAS  Article  Google Scholar 

  165. Tale Ahmad S, Haddad R (2011) Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech J Genet Plant Breed 47:17–27

    CAS  Google Scholar 

  166. Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16

    CAS  Article  Google Scholar 

  167. Wang XS, Han JG (2007) Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci Plant Nutr 53:278–285

    CAS  Article  Google Scholar 

  168. Wang XD, Ou-yang C, Fan ZR, Gao S, Chen F, Tang L (2010) Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress. J Anim Plant Sci 6:700–708

    Google Scholar 

  169. Wang X, Wei Z, Liu D, Zhao G (2011) Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. Afr J Biotechnol 10:545–549

    CAS  Google Scholar 

  170. Wang L, Chen W, Zhou W (2014) Assessment of future drought in Southwest China based on CMIP5 multimodel projections. Adv Atmos Sci 31:1035–1050

    Article  Google Scholar 

  171. Wang L, Chen W, Zhou W, Huang G (2015) Teleconnected influence of tropical Northwest Pacific sea surface temperature on interannual variability of autumn precipitation in Southwest China. Clim Dyn 1:13

    Google Scholar 

  172. Wu S, Hu C, Tan Q, Nie Z, Sun X (2014) Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum) under drought stress. Plant Physiol Biochem 83:365–374

    CAS  Article  Google Scholar 

  173. Xie Z, Song R, Shao H, Song F, Xu H, Lu Y (2015) Silicon improves maize photosynthesis in saline-alkaline soils. Sci World J Article ID 245072

  174. Xu CX, Ma YP, Liu YL (2015) Effects of silicon (Si) on growth, quality and ionic homeostasis of aloe under salt stress. S Afr J Bot 98:26–36

    CAS  Article  Google Scholar 

  175. Yamaji N, Mitatni N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389

    CAS  Article  Google Scholar 

  176. Yamaji N, Chiba Y, Mitani-Ueno N, Ma JF (2012) Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol 160:1491–1497

    CAS  Article  Google Scholar 

  177. Ye T, Shi P, Liu L, Fan Y, Hu J (2012) China’s drought disaster risk management: perspective of severe droughts in 2009–2010. Int J Disaster Risk Sci 3:84–97

    Article  Google Scholar 

  178. Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    CAS  Article  Google Scholar 

  179. Yin L, Wang S, Li J, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plant 35:3099–3107

    CAS  Article  Google Scholar 

  180. Yin L, Wang S, Liu P, Wang W, Cao D, Deng X, Zhang S (2014) Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiol Biochem 80:268–277

    CAS  Article  Google Scholar 

  181. Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den X, Zhang S (2015) Silicon‐mediated changes in polyamines participate in silicon‐induced salt tolerance in Sorghum bicolor L. Plant Cell Environ. doi:10.1111/pce.12521

    Google Scholar 

  182. Zargar SM, Agnihotri A (2013) Impact of silicon on various agro-morphological and physiological parameters in maize and revealing its role in enhancing water stress tolerance. Emir J Food Agric 25:138–141

    Google Scholar 

  183. Zhang C, Moutinho-Pereira JM, Correia C, Coutinho J, Gonçalves A, Guedes A, Gomes-Laranjo J (2013) Foliar application of Sili-K® increases chestnut (Castanea spp.) growth and photosynthesis, simultaneously increasing susceptibility to water deficit. Plant Soil 365:211–225

    CAS  Article  Google Scholar 

  184. Zhang Z, Chen Y, Wang P, Zhang S, Tao F, Liu X (2014) Spatial and temporal changes of agro-meteorological disasters affecting maize production in China since 1990. Nat Hazards 71:2087–2100

    Article  Google Scholar 

  185. Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472

    CAS  Article  Google Scholar 

  186. Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    CAS  Article  Google Scholar 

  187. Zhu YX, Xu XB, Hu YH, Han WH, Yin JL, Li HL, Gong HJ (2015) Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Rep. doi:10.1007/s00299-015-1814-9

    Google Scholar 

  188. Zuccarini P (2008) Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biol Plant 52:157–160

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Financial support from Government College University Faisalabad and Higher Education Commission (HEC) of Pakistan is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zia-ur-Rehman.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rizwan, M., Ali, S., Ibrahim, M. et al. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut Res 22, 15416–15431 (2015). https://doi.org/10.1007/s11356-015-5305-x

Download citation

Keywords

  • Abiotic stress
  • Antioxidants
  • Nutrient uptake
  • Osmotic adjustments
  • Photosynthesis
  • Plant growth
  • Silicon
  • Tolerance