Skip to main content
Log in

Structural effects of ionic liquids on microalgal growth inhibition and microbial degradation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present study, we investigated structural effects of various ionic liquids (ILs) on microalgal growth inhibition and microbial biodegradability. For this, we tested pyridinium- and pyrrolidinium-based ILs with various alkyl chain lengths and bromide anion, and compared the toxicological effects with log EC50 values of imidazolium-based IL with the same alkyl chains and anion from literature. Comparing determined EC50 values of cationic moieties with the same alkyl chain length, pyridinium-based ILs were found to be slightly more toxic towards the freshwater green alga, Pseudokirchneriella subcapitata, than a series of pyrrolidinium and imidazolium except to 1-octyl-3-methylimidazolium bromide. Concerning the biodegradation study of 12 ILs using the activated sludge microorganisms, the results showed that the pyridinium derivatives except to 1-propyl-3-methylpyridinium cation were degraded. Whereas in case of imidazolium- and pyrrolidinium-based compounds, only n-hexyl and n-octyl substituted cations were fully degraded but no significant biodegradation was observed for the short chains (three and four alkyl chains).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bernot RJ, Kennedy EE, Lamberti GA (2005) Acute and chronic toxicity of imidazolium-based ionic liquids on photosynthetic response of Pseudokirchneriella subcapitata. J Biosci Bioeng 105:425–428

    Google Scholar 

  • Biczak R, Pawlowska B, Balczewski P, Rychter P (2014) The role of the anion in the toxicity of imidazolium ionic liquids. J Hazard Mater 274:181–190

    Article  CAS  Google Scholar 

  • Blaise CR (1993) In: Richardson ML (ed) Ecotoxicology monitoring. VCH, Weinheim, pp 83–108

    Google Scholar 

  • Bond HC (1950) Problems in the cultivation of algae. In: Brunel J, Prescott GW, Tiffany LH (eds) The culturing of algae. Antioch, Yellow Springs, OH, pp 11–17

    Google Scholar 

  • Cho C-W, Pham TPT, Jeon Y-C, Vijayaraghavan K, Choe W-S, Yun Y-S (2007) Toxicity of imidazolium salt with anion bromide to a phytoplankton Selenastrum capricornutum: effect of alkyl-chain length. Chemosphere 69:1003–1007

    Article  CAS  Google Scholar 

  • Cho C-W, Jeon YC, Pham TPT, Vijayaraghavan K, Yun Y-S (2008a) The ecotoxicity of ionic liquids and traditional organic solvents on microalgal Selenastrum capricornutum. Ecotoxicol Environ Saf 71:166–171

    Article  CAS  Google Scholar 

  • Cho C-W, Pham TPT, Jeon Y-C, Yun Y-S (2008b) Influence of anions on the toxic effects of ionic liquids to a phytoplankton Selenastrum capricornutum. Chemosphere 10:67–72

    CAS  Google Scholar 

  • Deng Y, Beadham I, Ghavre M, Costa Gomes MF, Gathergood N, Husson P, Légeret B, Quilty B, Sancelme M, Besse-Hoggan P (2015) When can ionic liquids be considered readily biodegradable? Biodegradation pathways of pyridinium, pyrrolidinium and ammonium-based ionic liquids. Green Chem 17:1479–1491

    Article  CAS  Google Scholar 

  • Docherty KM, Dixon JK, Kulpa CF (2007) Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegradation 18:481–493

    Article  CAS  Google Scholar 

  • Docherty KM, Joyce MV, Kulacki KJ, Kulpa CF (2010) Microbial biodegradation and metabolite toxicity of three pyridinium-based cation ionic liquids. Green Chem 12:701–712

    Article  CAS  Google Scholar 

  • Freemantle M (2003) BASF’s smart ionic liquids—process scavenges acid on a large scale without producing solids. Chem Eng News 81:9

    Google Scholar 

  • Garcia MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids: part II. Effect of the anion and toxicology. Green Chem 7:9–14

    Article  CAS  Google Scholar 

  • Gathergood N, Garcia MT, Scammells PJ (2004) Biodegradable ionic liquids: part I. Concept, preliminary targets and evaluation. Green Chem 6:166–175

    Article  CAS  Google Scholar 

  • Gathergood N, Scammells PJ, Garcia MT (2006) Biodegradable ionic liquids: part III. The first readily biodegradable ionic liquids. Green Chem 8:156–160

    Article  CAS  Google Scholar 

  • Harjani JR, Singer RD, Garcia MT, Scammells PJ (2008) The design and synthesis of biodegradable pyridinium ionic liquids. Green Chem 10:436–438

    Article  CAS  Google Scholar 

  • Kulacki KJ, Lamberti GA (2008) Toxicity of imidazolium ionic liquids to freshwater algae. Green Chem 10:104–110

    Article  CAS  Google Scholar 

  • Larson JH, Frost PC, Lamberti GA (2008) Variable toxicity of ionic liquid-forming chemicals to Lemna minor and the influence of dissolved organic matter. Environ Toxicol Chem 27:676–681

    Article  CAS  Google Scholar 

  • Latala A, Stepnowski P, Nedzi M, Mrozik W (2005) Marine toxicity assessment of imidazolium ionic liquids: acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana. Aquat Toxicol 73:91–98

    Article  CAS  Google Scholar 

  • Latała A, Nędzi M, Stepnowski P (2009a) Toxicity of imidazolium and pyridinium based on ionic liquids towards algae, Chlorella vulgaris, Oocystis submarina (green algae) and Cyclotella meneghiniana, Skeletonema marinoi (diatoms). Green Chem 11:580–588

    Article  Google Scholar 

  • Latała A, Nędzi M, Stepnowski P (2009b) Toxicity of imidazolium and pyridinium based on ionic liquids towards algae, Bavillaria paxillifer (a microphytobenthic diatom) and Geitlerinema amphibium (a microphytobenthic blue green alga). Green Chem 11:1371–1376

    Article  Google Scholar 

  • Latała A, Nędzi M, Stepnowski P (2010) Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem 12:60–64

    Article  Google Scholar 

  • Lewis MA (1995) In: Rand GM (ed) Fundamentals of aquatic toxicology: effects, environmental fate, and risk assessment, 2nd edn. Taylor and Francis, Washington, DC, pp 135–170

    Google Scholar 

  • Ma J, Dong X, Fang Q, Li X, Wang J (2014) Toxicity of imidazolium-based ionic liquids on Physa acuta and the snail antioxidant stress response. J Biochem Mol Toxicol 28:69–75

    Article  CAS  Google Scholar 

  • Matzke M, Stolte S, Thiele K, Juffernholz T, Arning J, Ranke J, Welz-Biermann U, Jastorff B (2007) The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem 9:1198–1207

    Article  CAS  Google Scholar 

  • Matzke M, Stolte S, Arning J, Uebers U, Filsers J (2009) Ionic liquids in soils: effect of different anion species of imidazolium based ionic liquids on wheat (Triticum aestivum) as affected by different clay minerals and clay concentrations. Ecotoxicology 18:197–203

    Article  CAS  Google Scholar 

  • Modelli A, Sali A, Galletti P, Samori C (2008) Biodegradation of oxygenated and non-oxygenated imidazolium-based ionic liquids in soil. Chemosphere 73:1322–1327

    Article  CAS  Google Scholar 

  • Neumann J, Steudte S, Cho C-W, Thöming J, Stolte S (2014) Biodegradability of 27 pyrrolidinium, morpholinium, piperidinium, imidazolium and pyridinium ionic liquid cations under aerobic conditions. Green Chem 16:2174–2184

    Article  CAS  Google Scholar 

  • Organization for Economic Cooperation and Development (2002) Freshwater alga and cyanobacteria growth inhibition test, 2011 updated, OECD guideline 201

  • Organization for Economic Cooperation and Development (1992) Modified OECD screening, ready biodegradability, OECD guideline 301E

  • Pham TPT, Cho C-W, Min J, Yun Y-S (2008) Alkyl-chain length effects of imidazolium and pyridinium ionic liquids on photosynthesis response of Pseudokirchneriella subcapitata. J Biosci Bioeng 105:425–428

    Article  CAS  Google Scholar 

  • Pham TPT, Cho C-W, Jeon C-O, Chung Y-J, Lee M-W, Yun Y-S (2009) Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms. Environ Sci Technol 43:516–521

    Article  CAS  Google Scholar 

  • Pham TPT, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44:352–372

    Article  CAS  Google Scholar 

  • Ranke J, Mölter K, Stock F, Bottin-Weber U, Poczobutt J, Hoffmann J, Ondruschka B, Filser J, Jastorff B (2004) Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol Environ Saf 58:394–404

    Article  Google Scholar 

  • Rogers RD, Seddon KR (2005) Ionic liquids IIIB: fundamentals, process, challenges, and opportunities. ACS, Washington DC

    Google Scholar 

  • Romero A, Santos A, Tojo J, Rodriguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Harzard Mater 151:268–273

    Article  CAS  Google Scholar 

  • Stepnowski P, Składanowski AC, Ludwiczak A, Łaczyńska E (2004) Evaluating the cytotoxicity of ionic liquids using human cell line HeLa. Hum Exp Toxicol 23:513–517

    Article  CAS  Google Scholar 

  • Stolte S, Abdulkarim S, Arning J, Blomeyer-Nienstedt A-K, Bottin-Weber U, Matzke M, Ranke J, Jastorff B, Thöming J (2008) Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds. Green Chem 10:214–224

    Article  CAS  Google Scholar 

  • Stolte S, Schulz T, Cho C-W, Arning J, Strassner T (2013) Synthesis, toxicity and biodegradation of tunable aryl alkyl ionic liquids. ACS Sustainable Chem Eng 1:410–418

    Article  CAS  Google Scholar 

  • Stolte S, Steudte S, Igartua A, Stepnowski P (2011) The biodegradation of ionic liquids—the view from a chemical structure perspective. Curr Org Chem 15:1946–1978

    Article  CAS  Google Scholar 

  • Torrecilla JS, Garcia J, Rojo E, Rodriguez F (2009) Estimation of toxicity of ionic liquids in Leukemia Rat Cell Line and Acetylcholinesterase enzyme by principal component analysis, neutral networks and multiple linear regression. J Hazard Mater 164:182–194

    Article  CAS  Google Scholar 

  • U. S. Environmental Protection Agency (1994) Ecological effect test guidelines, Algal toxicity, Tiers I and II, OPPTS 850.5400

  • U. S. Environmental Protection Agency (1998) Fate, transport, and transformation test guidelines, OPPTS 835.3110, Ready biodegradability

  • van der Gast CJ, Whiteley AS, Thompson IP (2004) Temporal dynamics and degradation activity of an bacterial inoculum for treating waste metal-working fluid. Environ Microbiol 6:254–263

    Article  Google Scholar 

  • van der Gast CJ, Ager D, Lilley AK (2008) Temporal scaling of bacterial taxa is influenced by both stochastic and deterministic ecological factors. Environ Microbiol 10:1411–1418

    Article  Google Scholar 

  • Well AS, Coomber VT (2006) On the freshwater exotoxicology and biodegradation properties of some common ionic liquids. Org Process Res Dev 10:794–798

    Article  Google Scholar 

  • Yun Y-S, Park JM (1997) Development of gas recycling photobioreactor system for microalgal carbon dioxide fixation. Korean J Chem Eng 14:1297–1300

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Korean Government through NRF (2014R1A2A1A09007378, 2014R1A1A2008337) grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chul-Woong Cho or Yeoung-Sang Yun.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, T.P.T., Cho, CW. & Yun, YS. Structural effects of ionic liquids on microalgal growth inhibition and microbial degradation. Environ Sci Pollut Res 23, 4294–4300 (2016). https://doi.org/10.1007/s11356-015-5287-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5287-8

Keywords

Navigation