Skip to main content
Log in

A review on progress of heavy metal removal using adsorbents of microbial and plant origin

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Heavy metals released into the water bodies and on land surfaces by industries are highly toxic and carcinogenic in nature. These heavy metals create serious threats to all the flora and fauna due to their bioaccumulatory and biomagnifying nature at various levels of food chain. Existing conventional technologies for heavy metal removal are witnessing a downfall due to high operational cost and generation of huge quantity of chemical sludge. Adsorption by various adsorbents appears to be a potential alternative of conventional technologies. Its low cost, high efficiency, and possibility of adsorbent regeneration for reuse and recovery of metal ions for various purposes have allured the scientists to work on this technique. The present review compiles the exhaustive information available on the utilization of bacteria, algae, fungi, endophytes, aquatic plants, and agrowastes as source of adsorbent in adsorption process for removal of heavy metals from aquatic medium. During the last few years, a lot of work has been conducted on development of adsorbents after modification with various chemical and physical techniques. Adsorption of heavy metal ions is a complex process affected by operating conditions. As evident from the literature, Langmuir and Freundlich are the most widely used isotherm models, while pseudo first and second order are popularly studied kinetic models. Further, more researches are required in continuous column system and its practical application in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Halim SH, Shehata AMA, El-Shahat MF (2003) Removal of lead ions from industrial waste water by different types of natural materials. Water Res 37:1678–1683

    Article  CAS  Google Scholar 

  • Abia AA, HorsfallJr M, Didi O (2003) The use of chemically modified and unmodified cassava waste for the removal of Cd, Cu and Zn ions from aqueous solution. Bioresour Technol 90:345–348

    Article  CAS  Google Scholar 

  • Acar FN, Eren Z (2006) Removal of Cu (II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions. J Hazard Mater 137:909–914

    Article  CAS  Google Scholar 

  • Acharya J, Sahu JN, Sahoo BK, Mohanty CR, Meikap BC (2009) Removal of chromium (VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride. Chem Eng J 150:25–39

    Article  CAS  Google Scholar 

  • Adie DB, Okuofu CA, Osakwe C (2012) Comparative analysis of the adsorption of heavy metals in wastewater using Borrassus Aethiopium and Cocos Nucifera. Int J Appl Sci Technol 2:314–322

    Google Scholar 

  • Ahluwalia SS, Goyal D (2005) Removal of heavy metals from waste tea leaves from aqueous solution. Eng Life Sci 5:158–162

    Article  CAS  Google Scholar 

  • Ahmedna M, Marshall WE, Rao RM (2000) Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresour Technol 71:113–123

    Article  CAS  Google Scholar 

  • Ajmal M, Khan AH, Ahmed S, Ahmed A (1998) Role of saw dust in the removal of copper (II) from industrial wastes. Water Res 32:3085–3091

    Article  CAS  Google Scholar 

  • Ajmal M, Rao RAK, Ahmad R, Ahmad J (2000) Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni (II) from electroplating wastewater. J Hazard Mater 79:117–131

    Article  CAS  Google Scholar 

  • Ajmal M, Rao RAK, Anwar S, Ahmad J, Ahmad R (2003) Adsorption studies on rice husk: removal and recovery of Cd (II) from wastewater. Bioresour Technol 86:147–149

    Article  CAS  Google Scholar 

  • Ajmal M, Rao RAK, Ahmad R, Khan MA (2006) Adsorption studies on Parthenium hysterophrous weed: removal and recovery of Cd (II) from wastewater. J Hazard Mater 135:242–248

    Article  CAS  Google Scholar 

  • Akar T, Tunali S (2006) Biosorption characteristics of Aspergillus flavus biomass for removal of Pb (II) and Cu (II) ions from an aqueous solution. Bioresour Technol 97:1780–1787

    Article  CAS  Google Scholar 

  • Aksu Z, Isoglu IA (2005) Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem 40:3031–3044

    Article  CAS  Google Scholar 

  • Akthar MN, SivaramaSastry K, Mohan PM (1996) Mechanism of metal ion biosorption by fungal biomass. Biometals 9:21–28

    Article  CAS  Google Scholar 

  • Alfarra A, Frackowiak E, Beguin F (2004) The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Appl Surf Sci 228:84–92

    Article  CAS  Google Scholar 

  • Anandkumar J, Mandal B (2009) Removal of Cr (VI) from aqueous solution using Bael fruit (Aegle marmeloscorrea) shell as an adsorbent. J Hazard Mater 168:633–640

    Article  CAS  Google Scholar 

  • Anayurt RA, Sari A, Tuzen M (2009) Equilibrium, thermodynamic and kinetic studies on biosorption of Pb (II) and Cd (II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chem Eng J 151:255–261

    Article  CAS  Google Scholar 

  • Anirudhan TS, Radhakrishnan PG (2010) Uptake and desorption of nickel (II) using polymerised tamarind fruit shell with acidic functional groups in aqueous environments. Chem Ecol 26:93–109

    Article  CAS  Google Scholar 

  • Anirudhan TS, Sreekumari SS (2011) Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J Environ Sci 23:1989–1998

    Article  CAS  Google Scholar 

  • Argun ME, Dursun S, Ozdemir C, Karatas M (2007) Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater 141:77–85

    Article  CAS  Google Scholar 

  • Argun ME, Dursun S, Karatas M, Guru M (2008) Activation of pine cone using Fenton oxidation for Cd (II) and Pb (II) removal. Bioresour Technol 99:8691–8698

    Article  CAS  Google Scholar 

  • Arıca MY, Bayramoglu G (2005) Cr (VI) biosorption from aqueous solutions using free and immobilized biomass of Lentinus sajor caju: preparation and kinetic characterization. Colloids Surf A 253:203–211

    Article  CAS  Google Scholar 

  • Arıca MY, Kacar Y, Genc O (2001) Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresour Technol 80:121–129

    Article  Google Scholar 

  • Arıca MY, Arpa C, Kaya B, Bektas S, Denizli A, Genc O (2003) Comparative biosorption of mercuric ions from aquatic systems by immobilized live and heat-inactivated Trametes versicolor and Pleurotus sajur-caju. Bioresour Technol 89:145–154

    Article  CAS  Google Scholar 

  • Arıca MY, Bayramoglu G, Yılmaz M, Bektas S, Genc O (2004) Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. J Hazard Mater 109:191–199

    Article  CAS  Google Scholar 

  • Arora A, Saxena S, Sharma DK (2006) Tolerance and phytoaccumulation of chromium by three Azolla species. World J Microbiol Biotechnol 22:97–100

    Article  CAS  Google Scholar 

  • Augustynowicz J, Grosicki M, Hanus-Fajerska E, Lekka M, Waloszek A, Kołoczek H (2010) Chromium (VI) bioremediation by aquatic macrophyte Callitriche cophocarpa Sendtn. Chemosphere 79:1077–1083

    Article  CAS  Google Scholar 

  • Axtell NR, Sternberg SP, Claussen K (2003) Lead and nickel removal using Microspora and Lemna minor. Bioresour Technol 89:41–48

    Article  CAS  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 251:477–483

    Article  CAS  Google Scholar 

  • Bankar DB, Dara SS (1985) Effectiveness of Soymida febrifuga bark for scavenging lead ions. Proc Nation Semin Pollut Cont Environ Manag 1:121

    Google Scholar 

  • Baral SS, Das SN, Rath P (2006) Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochem Eng J 31:216–222

    Article  CAS  Google Scholar 

  • Barrera H, Urena-Nunez F, Bilyeu B, Barrera-Diaz C (2006) Removal of chromium and toxic ions presents in mine drainage by Ectodermis of Opuntia. J Hazard Mater 136:846–853

    Article  CAS  Google Scholar 

  • Bayramoglu G, Arıca MY (2008) Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets. Chem Eng J 143:133–140

    Article  CAS  Google Scholar 

  • Bayramoglu G, Denizli A, Bektas S, Arica MY (2002) Entrapment of Lentinus sajor-caju into Ca-alginate gel beads for removal of Cd (II) ions from aqueous solution: preparation and biosorption kinetics analysis. Microchem J 72:63–76

    Article  CAS  Google Scholar 

  • Bayramoglu G, Bektas S, Arıca MY (2003) Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mater 101:285–300

    Article  CAS  Google Scholar 

  • Benaissa H (2006) Screening of new sorbent materials for cadmium removal from aqueous solutions. J Hazard Mater 132:189–195

    Article  CAS  Google Scholar 

  • Bhabhatnagar A, Sillanpaa M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-a review. Chem Eng J 157:277–296

    Article  CAS  Google Scholar 

  • Biswas BK, Inoue K, Ghimire KN, Harada H, Ohto K, Kawakita H (2008) Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium. Bioresour Technol 99:8685–8690

    Article  CAS  Google Scholar 

  • Boudrahem F, Aissani-Benissad F, Ait-Amar H (2009) Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J Environ Manag 90:3031–3039

    Article  CAS  Google Scholar 

  • Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277:1–18

    Article  CAS  Google Scholar 

  • Bulut Y, Baysal Z (2006) Removal of Pb(II) from wastewater using wheat bran. J Environ Manag 78:107–113

    Article  CAS  Google Scholar 

  • Bulut Y, Tez Z (2007) Adsorption studies on ground shells of hazelnut and almond. J Hazard Mater 149:35–41

    Article  CAS  Google Scholar 

  • Bunluesin S, Kruatrachue M, Pokethitiyook P, Upatham S, Lanza GR (2007) Batch and continuous packed column studies of cadmium biosorption by Hydrilla verticillata biomass. J Biosci Bioeng 103:509–513

    Article  CAS  Google Scholar 

  • Cetinkaya DG, Aksu Z, Ozturk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892

    Article  Google Scholar 

  • Chamarthy S, Seo CW, Marshall WE (2001) Adsorption of selected toxic metals by modified peanut shells. J Chem Technol Biotechnol 76:593–597

    Article  CAS  Google Scholar 

  • Chen JM, Hao OJ (1998) Microbial chromium (VI) reduction. Crit Rev Environ Sci Technol 28:219–251

    Article  Google Scholar 

  • Chojnacka K (2007) Biosorption and bioaccumulation of microelements by Riccia fluitans in single and multi-metal system. Bioresour Technol 98:2919–2925

    Article  CAS  Google Scholar 

  • Chorom M, Parnian A, Jaafarzadeh N (2012) Nickel removal by the aquatic plant (Ceratopyllum demersum L.). Int J Environ Sci Dev 4:1–4

    Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    Article  CAS  Google Scholar 

  • Costanzo F, Silvestrelli PL, Ancilotto F (2012) Physisorption, diffusion, and chemisorption pathways of H2 molecule on graphene and on (2, 2) carbon nanotube by first principles calculations. J Chem Theory Comput 8:1288–1294

    Article  CAS  Google Scholar 

  • Cruz Viggi C, Pagnanelli F, Cibati A, Uccelletti D, Palleschi C, Toro L (2010) Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors. Water Res 44:151–158

    Article  CAS  Google Scholar 

  • de Lima MAB, de Franco LO, de Souza PM, do Nascimento AE, da Silva CAA, de Maia RCC, Rolim HML, Takaki GMC (2013) Cadmium tolerance and removal from Cunninghamella elegans related to the polyphosphate metabolism. Int J Mol Sci 14:7180–7192

    Article  CAS  Google Scholar 

  • Dean SA, Tobin JM (1999) Uptake of chromium cations and anions by milled peat. Resour Conserv Recycl 27:151–156

    Article  Google Scholar 

  • Demirbas E, Kobya M, Oncel S, Sencan S (2002) Removal of Ni II from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies. Bioresour Technol 84:291–293

    Article  CAS  Google Scholar 

  • Dhir B, Kumar R (2010) Adsorption of heavy metals by Salvinia biomass and agricultural residues. Int J Environ Res 4:427–432

    CAS  Google Scholar 

  • Diels L, Van Roy S, Somers K, Willems I, Doyen W, Mergeay M, Springael D, Leysen R (1995) The use of bacteria immobilized in tubular membrane reactors for heavy metal recovery and degradation of chlorinated aromatics. J Membr Sci 100:249–258

    Article  CAS  Google Scholar 

  • Dilek FB, Erbay A, Yetis U (2002) Ni(II) biosorption by Polyporous versicolor. Process Biochem 37:723–726

    Article  CAS  Google Scholar 

  • Dubey SP, Gopal K (2007) Adsorption of chromium (VI) on low cost adsorbents derived from agricultural waste material: a comparative study. J Hazard Mater 145:465–470

    Article  CAS  Google Scholar 

  • El Nemr A, Khaled A, Abdelwahab O, El-Sikaily A (2008) Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed. J Hazard Mater 152:263–275

    Article  CAS  Google Scholar 

  • Elangovan R, Philip L, Chandraraj K (2008a) Biosorption of chromium species by aquatic weeds: kinetics and mechanism studies. J Hazard Mater 152:100–112

    Article  CAS  Google Scholar 

  • Elangovan R, Philip L, Chandraraj K (2008b) Biosorption of hexavalent and trivalent chromium by palm flower (Borassus aethiopum). Chem Eng J 141:99–111

    Article  CAS  Google Scholar 

  • El-Gendy AS (2008) Modeling of heavy metals removal from municipal landfill leachate using living biomass of water hyacinth. Int J Phytoremed 10:14–30

    Article  CAS  Google Scholar 

  • El-Gendy M, Hassanein NM, Ibrahim EH, Abd H, El-Baky DHA (2011) Evaluation of some fungal endophytes of plant potentiality as low-cost adsorbents for heavy metals uptake from aqueous solution. J Appl Sci Res 5:466–473

    CAS  Google Scholar 

  • Eliezer Y, Eliezer S (1989) The fourth state of matter: an introduction to the physics of plasma. Adam Hilger, Philadelphia

    Book  Google Scholar 

  • Elifantz H, Telor E (2002) Heavy metal biosorption by plant biomass of the macrophyte Ludwigia stolonifera. Water Air Soil Pollut 141:207–218

    Article  CAS  Google Scholar 

  • Espinoza-Quinones FR, da Silva EA, de Almeida Rizzutto M, Palacio SM, Modenes AN, Szymanski N, Kroumov AD (2008) Chromium ions phytoaccumulation by three floating aquatic macrophytes from a nutrient medium. World J Microbiol Biotechnol 24:3063–3070

    Article  CAS  Google Scholar 

  • Farinella NV, Matos GD, Arruda MAZ (2007) Grape bagasse as a potential biosorbent of metals in effluent treatments. Bioresour Technol 98:1940–1946

    Article  CAS  Google Scholar 

  • Francesca P, Sara M, Luigi T (2008) New biosorbent materials for heavy metal removal: product development guided by active site characterization. Water Res 42:2953–2962

    Article  CAS  Google Scholar 

  • Gaballah I, Goy D, Allain E, Kilbertus G, Thauront J (1997) Recovery of copper through decontamination of synthetic solutions using modified barks. Met Metall Trans B 28:13–23

    Article  Google Scholar 

  • Garcia-Rosales G, Olguin MT, Colin-Cruz A, Romero-Guzman ET (2012) Effect of the pH and temperature on the biosorption of lead (II) and cadmium (II) by sodium-modified stalk sponge of Zea mays. Environ Sci Pollut Res 19:177–185

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Armendariz V, Bess-Oberto L, Chianelli RR, Rios J, Parsons JG, Gamez G (2000) Characterization of chromium (VI) binding and reduction to chromium (III) by the agricultural byproduct of Avena monida (oat) biomass. J Hazard Mater 80:175–188

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Hejazi M, Tiemann KJ, Parsons JG, Duarte-Gardea M, Henning J (2002) Use of hop (Humulus lupulus) agricultural by-products for the reduction of aqueous lead (II) environmental health hazards. J Hazard Mater 91:95–112

    Article  CAS  Google Scholar 

  • Garg VK, Gupta R, Kumar R, Gupta RK (2004) Adsorption of chromium from aqueous solution on treated sawdust. Bioresour Technol 92:79–81

    Article  CAS  Google Scholar 

  • Garg UK, Kaur MP, Garg VK, Sud D (2007) Removal of hexavalent Cr from aqueous solutions by agricultural waste biomass. J Hazard Mater 140:60–68

    Article  CAS  Google Scholar 

  • Giri AK, Patel RK (2011) Studies on the removal of Hg (II) from water by activated adsorbent prepared from Eichhornia crassipes biomass. Proceedings of the 3rd International CEMEPE & SECOTOX ConferenceSkiathos, ISBN 978-960-6865-43-5

  • Gregg SJ, Sing KSW, Salzberg HW (1967) Adsorption surface area and porosity. J Electrochem Soc 114:279C–279C

    Article  Google Scholar 

  • Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bioresour Technol 101:8599–8605

    Article  CAS  Google Scholar 

  • Gupta S, Babu BV (2009) Utilization of waste product (tamarind seeds) for the removal of Cr (VI) from aqueous solutions: equilibrium, kinetics, and regeneration studies. J Environ Manag 90:3013–3022

    Article  CAS  Google Scholar 

  • Gupta VK, Nayak A (2012) Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem Eng J 180:81–90

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008) Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J Hazard Mater 152:407–414

    Article  CAS  Google Scholar 

  • Gupta VK, Srivastava AK, Jain N (2001) Biosorption of chromium (VI) from aqueous solutions by green algae spirogyra species. Water Res 35:4079–4085

    Article  CAS  Google Scholar 

  • Hamdy AA (2000) Biosorption of heavy metals by marine algae. Curr Microbiol 41:232–238

    Article  CAS  Google Scholar 

  • Haque KE (1999) Microwave energy for mineral treatment processes-a brief review. Int J Miner Process 57:1–24

    Article  CAS  Google Scholar 

  • Hasar H (2003) Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J Hazard Mater 97:49–57

    Article  CAS  Google Scholar 

  • Hashim MA, Chu KH (2004) Biosorption of cadmium by brown, green, and red seaweeds. Chem Eng J 97:249–255

    Article  CAS  Google Scholar 

  • Horsfall M Jr, Abia AA, Spiff AI (2006) Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste. Bioresour Technol 97:283–291

    Article  CAS  Google Scholar 

  • Hossain MA, Ngo HH, Guo WS, Nghiem LD, Hai FI, Vigneswaran S, Nguyen TV (2014) Competitive adsorption of metals on cabbage waste from multi-metal solutions. Bioresour Technol 160:79–88

    Article  CAS  Google Scholar 

  • Iqbal M, Edyvean RGJ (2004) Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Miner Eng 17:217–223

    Article  CAS  Google Scholar 

  • Iqbal M, Saeed A, Akhtar N (2002) Petiolar felt sheet of palm: a new biosorbent for the removal of heavy metals from contaminated water. Bioresour Technol 81:151–153

    Article  CAS  Google Scholar 

  • Iqbal M, Saeed A, Zafar SI (2009) FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J Hazard Mater 164:161–171

    Article  CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull 50:340–343

    Article  CAS  Google Scholar 

  • Jain M, Garg VK, Kadirvelu K (2014) Removal of Ni (II) from aqueous system by chemically modified sunflower biomass. Desalination Water Treat 52:5681–5695

    Article  CAS  Google Scholar 

  • Jalali R, Ghafourian H, Asef Y, Davarpanah SJ, Sepehr S (2002) Removal and recovery of lead using nonliving biomass of marine algae. J Hazard Mater 92:253–262

    Article  CAS  Google Scholar 

  • Jeyakumar RS, Chandrasekaran V (2014) Adsorption of lead (II) ions by activated carbons prepared from marine green algae: equilibrium and kinetics studies. Int J Ind Chem 5:1–9

    Article  Google Scholar 

  • Jiang R, Tian J, Zheng H, Qi J, Sun S, Li X (2015) A novel magnetic adsorbent based on waste litchi peels for removing Pb (II) from aqueous solution. J Environ Manag 155:24–30

    Article  CAS  Google Scholar 

  • Johari K, Saman N, Song ST, Heng JYY, Mat H (2014) Study of Hg (II) removal from aqueous solution using lignocellulosic coconut fiber biosorbents: equilibrium and kinetic evaluation. Chem Eng Commun 201:1198–1220

    Article  CAS  Google Scholar 

  • Johns MM, Marshall WE, Toles CA (1998) Agricultural byproducts as granular activated carbons for adsorbing dissolved metals and organics. J Chem Technol Biotechnol 71:131–140

    Article  CAS  Google Scholar 

  • Jong T, Parry DL (2003) Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale up flow anaerobic packed bed reactor runs. Water Res 37:3379–3389

    Article  CAS  Google Scholar 

  • Kacar Y, Arpa C, Tan S, Denizli A, Genc O, Arıca MY (2002) Biosorption of Hg (II) and Cd (II) from aqueous solutions: comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium. Process Biochem 37:601–610

    Article  CAS  Google Scholar 

  • Kadirvelu K, Namasivayam C (2000) Agricultural by-product as metal adsorbent: sorption of lead (II) from aqueous solution onto Coir pith carbon. Environ Technol 21:1091–1097

    Article  CAS  Google Scholar 

  • Kadirvelu K, Thamaraiselvi K, Namasivayam C (2001) Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour Technol 76:63–65

    Article  CAS  Google Scholar 

  • Kaewsarn P, Yu Q (2001) Cadmium (II) removal from aqueous solutions by pre-treated biomass of marine alga Padina sp. Environ Pollut 112:209–213

    Article  CAS  Google Scholar 

  • Kamble SK, Patil MR (2001) Removal of heavy metals from waste water of thermal power station by water-hyacinths. Ind J Environ Prot 21:623–626

    CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1995) Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53:195–206

    CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1997) Heavy metal biosorption sites in Aspergillus niger. Bioresour Technol 61:221–227

    Article  CAS  Google Scholar 

  • Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104

    Article  CAS  Google Scholar 

  • Karnitz O Jr, Gurgel LVA, De Melo JCP, Botaro VR, Melo TMS, de Freitas Gil RP, Gil LF (2007) Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour Technol 98:1291–1297

    Article  CAS  Google Scholar 

  • Karthikeyan T, Rajgopal S, Miranda LR (2005) Cr(VI) adsorption from aqueous solution by Hevea brasilinesis saw dust activated carbon. J Hazard Mater 124:192–199

    Article  CAS  Google Scholar 

  • Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk MFCF, Forster CF (2003) Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochem 39:179–183

    Article  CAS  Google Scholar 

  • Keskinkan O, Goksu MZL, Basibuyuk M, Forster CF (2004) Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol 92:197–200

    Article  CAS  Google Scholar 

  • Khormaei M, Nasernejad B, Edrisi M, Eslamzadeh T (2007) Copper biosorption from aqueous solutions by sour orange residue. J Hazard Mater 149:269–274

    Article  CAS  Google Scholar 

  • Kieu HT, Mueller E, Horn H (2011) Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria. Water Res 45:3863–3870

    Article  CAS  Google Scholar 

  • King P, Srinivas P, Kumar YP, Prasad VSRK (2006) Sorption of copper (II) ion from aqueous solution by Tectona grandis Lf (teak leaves powder). J Hazard Mater 136:560–566

    Article  CAS  Google Scholar 

  • Kumar U (2006) Agricultural products and by-products as a low cost adsorbent for heavy metal removal from water and wastewater: a review. Sci Res Essay 1(2):33–37

    Google Scholar 

  • Kumar U, Bandyopadhyay M (2006) Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour Technol 97:104–109

    Article  CAS  Google Scholar 

  • Kumar YP, King P, Prasad VSRK (2006) Zinc biosorption on Tectona grandis Lf leaves biomass: equilibrium and kinetic studies. Chem Eng J 124:63–70

    Article  CAS  Google Scholar 

  • Kumar JN, Oommen C, Kumar RN (2009) Biosorption of heavy metals from aqueous solution by green marine macroalgae from Okha Port, Gulf of Kutch, India. Am Eurasian J Agric Environ Sci 6:317–323

    Google Scholar 

  • Lakshmanraj L, Gurusamy A, Gobinath MB, Chandramohan R (2009) Studies on the biosorption of hexavalent chromium from aqueous solutions by using boiled mucilaginous seeds of Ocimum americanum. J Hazard Mater 169:1141–1145

    Article  CAS  Google Scholar 

  • Lakshmipathy R, Sarada NC (2013) Application of watermelon rind as sorbent for removal of nickel and cobalt from aqueous solution. Int J Miner Process 122:63–65

    Article  CAS  Google Scholar 

  • Lapedes DN (1974) Dictionary of scientific and technical terms. McGraw Hill, New York, p 674

    Google Scholar 

  • Lee SH, Shon JS, Chung HS, Lee MY, Yang JW (1999) Effect of chemical modification of carboxyl groups in apple residues on metal ion binding. Korean J Chem Eng 16:576–580

    Article  CAS  Google Scholar 

  • Lesage E, Mundia C, Rousseau DPL, Van de Moortel AMK, Du Laing G, Meers E, Tack FMG, Verloo MG (2007) Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol Eng 30:320–325

    Article  Google Scholar 

  • Leyva-Ramos R, Bernal-Jacome LA, Acosta-Rodriguez I (2005) Adsorption of cadmium (II) from aqueous solution on natural and oxidized corncob. Sep Purif Technol 45:4–49

    Google Scholar 

  • Li X, Tang Y, Cao X, Lu D, Luo F, Shao W (2008) Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel. Colloids Surf A Physicochem Eng Asp 317:512–521

    Article  CAS  Google Scholar 

  • Li M, Cheng X, Guo H (2012) Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int Biodeterior Biodegrad 76:81–85

    Article  CAS  Google Scholar 

  • Liu Y, Chen H, Wu G, Wu X (2010) Feasibility of estimating heavy metal concentrations in Phragmites australis using laboratory-based hyperspectral data-A case study along Le’an River, China. Int J Appl Earth Obser Geoinfor 12:166–170

    Article  Google Scholar 

  • Liu C, Ngo HH, Guo W, Tung KL (2012) Optimal conditions for preparation of banana peels, sugarcane bagasse and watermelon rind in removing copper from water. Bioresour Technol 119:349–354

    Article  CAS  Google Scholar 

  • Lodeiro P, Cordero B, Barriada JL, Herrero R, Sastre de Vicente ME (2005) Biosorption of cadmium by biomass of brown marine macroalgae. Bioresour Technol 96:1796–1803

    Article  CAS  Google Scholar 

  • Low KS, Lee CK, Liew SC (2000) Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem 36:59–64

    Article  CAS  Google Scholar 

  • Luo SL, Chen L, Chen J, Xiao X, Xu T, Wan Y, Rao C, Liu CB, Liu YT, Lai C, Zeng G (2011a) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85:1130–1138

    Article  CAS  Google Scholar 

  • Luo S, Xiao X, Xi Q, Wan Y, Chen L, Zeng G, Liu C, Guo H, Chen J (2011b) Enhancement of cadmium bioremediation by endophytic bacterium Bacillus sp. L14 using industrially used metabolic inhibitors (DCC or DNP). J Hazard Mater 190:1079–1082

    Article  CAS  Google Scholar 

  • Luo S, Li X, Chen L, Chen J, Wan Y, Liu C (2014) Layer-by-layer strategy for adsorption capacity fattening of endophytic bacterial biomass for highly effective removal of heavy metals. Chem Eng J 239:312–321

    Article  CAS  Google Scholar 

  • Mahvi AH, Nouri J, Omrani GA, Gholami F (2007) Application of Platanus orientalis leaves in removal of cadmium from aqueous solution. World Appl Sci J 2:40–44

    Google Scholar 

  • Maine MA, Sune NL, Lagger SC (2004) Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Res 38:1494–1501

    Article  CAS  Google Scholar 

  • Malkoc E, Nuhoglu Y (2005) Investigation of Ni II removal from aqueous solutions using tea factory waste. J Hazard Mater 127:120–128

    Article  CAS  Google Scholar 

  • Mant C, Costa S, Williams J, Tambourgi E (2006) Phytoremediation of chromium by model constructed wetland. Bioresour Technol 97:1767–1772

    Article  CAS  Google Scholar 

  • Marshall WE, Johns MM (1996) Agricultural by-products as metal adsorbents: sorption properties and resistance to mechanical abrasion. J Chem Technol Biotechnol 66:192–198

    Article  CAS  Google Scholar 

  • Martinez-Juarez VM, Cardenas-Gonzalez JF, Torre-Bouscoulet ME, Acosta-Rodríguez I (2012) Biosorption of mercury (II) from aqueous solutions onto fungal biomass. Bioinorg Chem Appl 201:1–5

    Article  CAS  Google Scholar 

  • Matheickal JT, Yu Q (1996) Biosorption of lead from aqueous solutions by marine algae Ecklonia radiata. Water Sci Technol 34:1–7

    Article  CAS  Google Scholar 

  • Matheickal JT, Yu Q (1999) Biosorption of lead (II) and copper (II) from aqueous solutions by pre-treated biomass of Australian marine algae. Bioresour Technol 69:223–229

    Article  CAS  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, Oxford

    Google Scholar 

  • Memon SQ, Memon N, Shah SW, Khuhawar MY, Bhanger MI (2007) Sawdust-A green and economical sorbent for the removal of cadmium (II) ions. J Hazard Mater 139:116–121

    Article  CAS  Google Scholar 

  • Memon JR, Memon SQ, Bhanger MI, El-Turki A, Hallam KR, Allen GC (2009) Banana peel: a green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater. Colloids Surf B Biointerfaces 70:232–237

    Article  CAS  Google Scholar 

  • Min SH, Han JS, Shin EW, Park JK (2004) Improvement of cadmium ion removal by base treatment of juniper fiber. Water Res 38:1289–1295

    Article  CAS  Google Scholar 

  • Miretzky P, Saralegui A, Fernandez Cirelli A (2006) Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere 62:247–254

    Article  CAS  Google Scholar 

  • Mishra VK, Tripathi BD (2009) Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). J Hazard Mater 164:1059–1063

    Article  CAS  Google Scholar 

  • Mondal MK (2009) Removal of Pb (II) ions from aqueous solution using activated tea waste: adsorption on a fixed-bed column. J Environ Manag 90:3266–3271

    Article  CAS  Google Scholar 

  • Montanher SF, Oliveira EA, Rollemberg MC (2005) Removal of metal ions from aqueous solutions by sorption onto rice bran. J Hazard Mater 117:207–211

    Article  CAS  Google Scholar 

  • Munaf E, Zein R (1997) The use of rice husk for removal of toxic metals from wastewater. Environ Technol 18:359–362

    Article  CAS  Google Scholar 

  • Muthukumaran K, Sophie Beulah S (2010) SEM and FT-IR studies on nature of adsorption of mercury (II) and chromium (VI) from wastewater using chemically activated Syzygium jambolanum nut carbon. Asian J Chem 22:7857–7864

    CAS  Google Scholar 

  • Muthusamy P, Murugan S, Manothi S (2012) Removal of nickel ion from industrial waste water using maize cob. ISCA J Biol Sci 1:7–11

    Google Scholar 

  • Nag A, Gupta N, Biswas MN (1998) Removal of chromium (VI) and arsenic (III) by chemically treated saw dust. Ind J Environ Prot 19:25–29

    Google Scholar 

  • Narain S, Ojha CSP, Mishra SK, Chaube UC, Sharma PK (2011) Cadmium and chromium removal by aquatic plant. Int J Environ Sci 1:1297–1304

    CAS  Google Scholar 

  • Nassar MM, Ewida KT, Ebrahiem EE, Magdy YH, Mheaedi MH (2004) Adsorption of iron and manganese ions using low-cost materials as adsorbents. Adsorpt Sci Technol 22:25–37

    Article  CAS  Google Scholar 

  • Nomanbhay SF, Palanisamy K (2005) Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron J Biotechnol 8:44–53

    Article  Google Scholar 

  • Oliveira EA, Montanher SF, Andrade AD, Nobrega JA, Rollemberg MC (2005) Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochem 40:3485–3490

    Article  CAS  Google Scholar 

  • Oliveira WE, Franca AS, Oliveira LS, Rocha SD (2008) Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. J Hazard Mater 152:1073–1081

    Article  CAS  Google Scholar 

  • Pagnanelli F, Mainelli S, Veglio F, Toro L (2003) Heavy metal removal by olive pomace: biosorbent characterisation and equilibrium modelling. Chem Eng Sci 58:4709–4717

    Article  CAS  Google Scholar 

  • Palma G, Freer GJ, Beeza J (2003) Removal of metal ions by modified Pinus radiata bark and tannins from water solutions. Water Res 37:4974–4980

    Article  CAS  Google Scholar 

  • Panda GC, Das SK, Chatterjee S, Maity PB, Bandopadhyay TS, Guha AK (2006) Adsorption of cadmium on husk of Lathyrus sativus: physico-chemical study. Colloids Surf B: Biointerfaces 50:49–54

    Article  CAS  Google Scholar 

  • Panneerselvam P, Morad N, Tan KA (2011) Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel (II) from aqueous solution. J Hazard Mater 186:160–168

    Article  CAS  Google Scholar 

  • Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M (2006) Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochem 41:609–615

    Article  CAS  Google Scholar 

  • Park SJ, Kim JS (2001) Influence of plasma treatment on microstructures and acid–base surface energetics of nanostructured carbon blacks: N2 plasma environment. J Colloid Interface Sci 244:336–341

    Article  CAS  Google Scholar 

  • Pathania D (2011) Removal and recovery of copper ions from the aqueous solution using low cost adsorbent. In: Proceedings of the Twelfth International conference on environmental science and technology. Rhodes, Greece 8–10

  • Pehlivan E, Cetin S, Yanik BH (2006) Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. J Hazard Mater 135:193–199

    Article  CAS  Google Scholar 

  • Pehlivan E, Altun T, Cetin S, Iqbal Bhanger M (2009a) Lead sorption by waste biomass of hazelnut and almond shell. J Hazard Mater 167:1203–1208

    Article  CAS  Google Scholar 

  • Pehlivan E, Altun T, Parlayici S (2009b) Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions. J Hazard Mater 164:982–986

    Article  CAS  Google Scholar 

  • Pino G, de Mesquita L, Torem M, Pinto G (2006) Biosorption of heavy metals by powder of green coconut shell. Sep Sci Technol 41:3141–3153

    Article  CAS  Google Scholar 

  • Prakash BS, Kumar SV (2013) Batch removal of heavy metals by biosorption onto marine algae-Equilibrium and kinetic studies. Int J Chem Technol Res 5:1254–1262

    Google Scholar 

  • Prasad MNV, Freitas H (2000) Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environ Pollut 110:277–283

    Article  CAS  Google Scholar 

  • Qari HA, Hassan IA (2014) Removal of pollutants from waste water using Dunaliella Algae. Biomed Pharmacol J 7:147–151

    Article  CAS  Google Scholar 

  • Qi BC, Aldrich C (2008) Biosorption of heavy metals from aqueous solutions with tobacco dust. Bioresour Technol 99:5595–5601

    Article  CAS  Google Scholar 

  • Quaggiotti S, Barcaccia G, Schiavon M, Nicole S, Galla G, Rossignolo V, Soattin M, Malagoli M (2007) Phytoremediation of chromium using Salix species: cloning ESTs and candidate genes involved in the Cr response. Gene 402:68–80

    Article  CAS  Google Scholar 

  • Radway JC, Wilde EW, Whitaker MJ, Weissman JC (2001) Screening of algal strains for metal removal capabilities. J Appl Phycol 13:451–455

    Article  CAS  Google Scholar 

  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2009) Adsorption of copper(II), chromium(III), nickel(II) and lead(II) ions from aqueous solutions by meranti sawdust. J Hazard Mater 170:969–977

    Article  CAS  Google Scholar 

  • Rai PK, Tripathi BD (2007) Heavy metals adsorption characteristics of free floating aquatic macrophyte Spirodela poyrhhiza. J Environ Res Dev 148:75–84

    Google Scholar 

  • Rai UN, Sinha S, Tripathi RD, Chandra P (1995) Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol Eng 5:5–12

    Article  Google Scholar 

  • Rajeshwarirajan SV (2002) Activated parthenium carbon as an adsorbent for the removal of dyes and heavy metal ions from aqueous solution. Bioresour Technol 85:205–206

    Article  Google Scholar 

  • Raji C, Anirudhan TS (1999) Sorption of As (III) on surface modified sawdust carbon. Indian J Environ Health 41:184–193

    CAS  Google Scholar 

  • Raji C, Shubha KP, Anirudhan TS (1997) Use of chemically modified sawdust in the removal of Pb (II) ions from aqueous media. Indian J Environ Health 39:230–238

    CAS  Google Scholar 

  • Ranganathan K (2000) Chromium removal by activated carbons prepared from Casurina equisetifolia leaves. Bioresour Technol 73:99–103

    Article  CAS  Google Scholar 

  • Rao M, Parwate AV, Bhole AG (2002) Removal of Cr 6+ and Ni 2+ from aqueous solution using bagasse and fly ash. Waste Manag 22:821–830

    Article  CAS  Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353

    Article  CAS  Google Scholar 

  • Saeed A, Iqbal M (2003) Bioremoval of Cd from aqueous solution by black gram husk (Cicer arientinum). Water Res 37:3472–3480

    Article  CAS  Google Scholar 

  • Saeed A, Akhter MW, Iqbal M (2005a) Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbents. Sep Purif Technol 45:25–31

    Article  CAS  Google Scholar 

  • Saeed A, Iqbal M, Akhtar MW (2005b) Removal and recovery of lead(II) from single and multiple, (Cd, Ni, Cu, Zn) solutions by crop milling waste (black gram husk). J Hazard Mater 117:65–73

    Article  CAS  Google Scholar 

  • Saeed A, Iqbal M, Holl WH (2009) Kinetics, equilibrium and mechanism of Cd+2 removal from aqueous solution by mungbean husk. J Hazard Mater 168:1467–1475

    Article  CAS  Google Scholar 

  • Safa Ozcan A, Tunali S, Akar T, Ozcan A (2009) Biosorption of lead (II) ions onto waste biomass of Phaseolus vulgaris L.: estimation of the equilibrium, kinetic and thermodynamic parameters. Desalination 244:188–198

    Article  CAS  Google Scholar 

  • Saglam N, Say R, Denizli A, Patır S, Arıca MY (1999) Biosorption of inorganic mercury and alkylmercury species on to Phanerochaete chrysosporium mycelium. Process Biochem 34:725–730

    Article  CAS  Google Scholar 

  • Saha R, Mukherjee K, Saha I, Ghosh A, Ghosh SK, Saha B (2013) Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Res Chem Intermed 39:2245–22

    Article  CAS  Google Scholar 

  • Saikaew W, Kaewsarn P, Saikaew W (2009) Pomelo peel: agricultural waste for biosorption of cadmium ions from aqueous solutions. World Acad Sci Eng Technol 56:287–291

    Google Scholar 

  • Saleh TA, Gupta VK (2012) Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ Sci Pollut Res 19:1224–1228

    Article  CAS  Google Scholar 

  • Sarin V, Pant KK (2006) Removal of chromium from industrial waste by using eucalyptus bark. Bioresour Technol 97:15–20

    Article  CAS  Google Scholar 

  • Say R, Denizli A, Arıca MY (2001) Biosorption of cadmium (II), lead (II) and copper (II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour Technol 76:67–70

    Article  CAS  Google Scholar 

  • Schneider IAH, Rubio J (1999) Sorption of heavy metal ions by the nonliving biomass of fresh water macrophytes. Environ Sci Technol 33:2213–2217

    Article  CAS  Google Scholar 

  • Sciban M, Klasnja M, Skrbic B (2006) Modified hardwood sawdust as adsorbent of heavy metal ions from water. Wood Sci Technol 40:217–227

    Article  CAS  Google Scholar 

  • Sciban M, Radetic B, Kevresan Z, Klasnja M (2007) Adsorption of heavy metals from electroplating waste water by wood saw dust. Bioresour Technol 98:402–409

    Article  CAS  Google Scholar 

  • Seki K, Saito N, Aoyama M (1997) Removal of heavy metal ions from solutions by coniferous barks. Wood Sci Technol 31:441–447

    Article  CAS  Google Scholar 

  • Shafeeyan MS, Wan Daud WM, Houshmand A, Shamiri A (2010) Review on surface modification of activated carbon for carbon dioxide adsorption. J Anal Appl Pyrol 89:143–151

    Article  CAS  Google Scholar 

  • Shaikh PR, Bhosle AB (2011) Bioaccumulation of chromium by aquatic macrophytes Hydrilla sp. & Chara sp. Adv Appl Sci Res 2:214–220

    CAS  Google Scholar 

  • Shakirullah M, Ahmad I, Shah S (2006) Sorption studies of nickel ions onto sawdust of Dalbergia sissoo. J Chin Chem Soc 53:1045–1052

    Article  Google Scholar 

  • Sharma P, Kumari P, Srivastava MM, Srivastava S (2007) Ternary biosorption studies of Cd(II), Cr(III) and Ni(II) on shelled Moringa oleifera seeds. Bioresour Technol 98:474–477

    Article  CAS  Google Scholar 

  • Shen W, Li Z, Lieu Y (2008) Surface chemical functional groups modification of porous carbon. Recent Pat Chem Eng 1:27–40

    Article  CAS  Google Scholar 

  • Shukla SR, Pai RS (2005) Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded groundnut shells and sawdust. Sep Purif Technol 43:1–8

    Article  CAS  Google Scholar 

  • Shukla SS, Yu LJ, Dorris K, Shukla A (2005) Removal of nickel from aqueous solutions by saw dust. J Hazard Mater 121:243–246

    Article  CAS  Google Scholar 

  • Sing C, Yu J (1998) Copper adsorption and removal from water by living mycelium of white-rot fungus Phanerochaete chrysosporium. Water Res 32:2746–2752

    Article  CAS  Google Scholar 

  • Singh S, Pradhan S, Rai LC (2000) Metal removal from single and multimetallic systems by diVerent biosorbent materials as evaluated by diVerential pulse anodic stripping voltammetry. Process Biochem 36:175–182

    Article  CAS  Google Scholar 

  • Singh KK, Rastogi R, Hasan SH (2005) Removal of cadmium from waste water using agricultural waste using rice polish. J Hazard Mater 121:51–58

    Article  CAS  Google Scholar 

  • Singh KK, Singh AK, Hasan SH (2006) Low cost bio-sorbent ‘wheat bran’ for the removal of cadmium from wastewater: kinetic and equilibrium studies. Bioresour Technol 97:994–1001

    Article  CAS  Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    Article  CAS  Google Scholar 

  • Sobhanardakani S, Parvizimosaed H, Olyaie E (2013) Heavy metals removal from wastewaters using organic solid waste-rice husk. Environ Sci Pollut Res 20:5265–5271

    Article  CAS  Google Scholar 

  • Sousa FW, Oliveira AG, Ribeiro JP, Rosa MF, Keukeleire D, Nascimento RF (2010) Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology. J Environ Manag 91:1634–1640

    Article  CAS  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Cr(VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  CAS  Google Scholar 

  • Suemitsu R, Uenishi R, Akashi I, Nakano M (1986) The use of dyestuff-treated rice hulls for removal of heavy metal ions from wastewater. J Appl Polym Sci 31:75–83

    Article  CAS  Google Scholar 

  • Sun S, Yang J, Li Y, Wang K, Li X (2014) Optimizing adsorption of Pb (II) by modified litchi pericarp using the response surface methodology. Ecotoxicol Environ Saf 108:29–35

    Article  CAS  Google Scholar 

  • Tarley CRT, Ferreira SLC, Arruda MAZ (2004) Use of modified rice husks as a natural solid adsorbent of trace metals: characterization and development of an on-line preconcentration system for cadmium and lead determination by FAAS. Microchem J 77:163–175

    Article  CAS  Google Scholar 

  • Taty-Costodes VC, Favdvet H, Porte C, Delacroix A (2003) Removal of cadmium and lead ions from aqueous solutions by adsorption onto saw dust of Pinus sylvestris. J Hazard Mater 105:121–142

    Article  CAS  Google Scholar 

  • Tien CJ (2002) Biosorption of metal ions by freshwater algae with different surface characteristics. Process Biochem 38:605–613

    Article  CAS  Google Scholar 

  • Vajpayee P, Rai UN, Sinha S, Tripathi RD, Chandra P (1995) Bioremediation of tannery effluent by aquatic macrophytes. Bull Environ Contam Toxicol 55:546–553

    Article  CAS  Google Scholar 

  • Vajpayee P, Rai UN, Ali MB, Tripathi RD, Yadav V, Sinha S, Singh SN (2001) Chromium-induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bull Environ Contam Toxicol 67:246–256

    CAS  Google Scholar 

  • Vazquez G, Gonzalez-Alvarez J, Santos J, Freire MS, Antorrena G (2009) Evaluation of potential applications for chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind Crop Prod 29:364–370

    Article  CAS  Google Scholar 

  • Vecchio A, Finoli C, Di Simine D, Andreoni V (1998) Heavy metal biosorption by bacterial cells. Fresenius J Anal Chem 361:338–342

    Article  CAS  Google Scholar 

  • Venkata Ramana DK, Reddy HKD, Yu JS, Seshaiah K (2012) Pigeon peas hulls waste as potential adsorbent for removal of Pb(II) and Ni(II) from water. Chem Eng J 197:24–33

    Article  CAS  Google Scholar 

  • Venkateswarlu P, Ratnam MV, Rao DS, Rao MV (2007) Removal of chromium from aqueous solution using Azadirachta indica (neem) leaf powder as an adsorbent. Int J Phys Sci 2:188–195

    Google Scholar 

  • Vimala R, Charumathi D, Das N (2011) Packed bed column studies on Cd(II) removal from industrial wastewater by macrofungus Pleurotus platypus. Desalination 275:291–296

    Article  CAS  Google Scholar 

  • Volesky B, Weber J, Park JM (2003) Continuous-flow metal biosorption in a regenerable Sargassum column. Water Res 37:297–306

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  CAS  Google Scholar 

  • Wang CL, Michels PC, Dawson SC, Kitisakkul S, Baross JA, Keasling JD, Clark DS (1997) Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Appl Environ Microbiol 63:4075–4078

    CAS  Google Scholar 

  • Wang QL, Ding DX, Hu EM, Yu RL, Qiu GZ (2008a) Removal of SO4 2−, uranium and other heavy metal ions from simulated solution by sulfate reducing bacteria. Trans Nonferrous Metal Soc 18:1529–1532

    Article  CAS  Google Scholar 

  • Wang XS, Tang YP, Tao SR (2008b) Removal of Cr (VI) from aqueous solutions by the nonliving biomass of alligator weed: kinetics and equilibrium. Adsorption 14:823–830

    Article  CAS  Google Scholar 

  • Weber WJ, McGinley PM, Katz LE (1991) Sorption phenomena in subsurface systems: concepts, models and effects on contaminant fate and transport. Water Res 25:499–528

    Article  CAS  Google Scholar 

  • Wilson W, Yang H, Seo CW, Marshall WE (2006) Select metal adsorption by activated carbon made from peanut shells. Bioresour Technol 97:2266–2270

    Article  CAS  Google Scholar 

  • Wong KK, Lee CK, Low KS, Haron MJ (2003) Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solution. Chemosphere 50:23–28

    Article  CAS  Google Scholar 

  • Wu Y, Wen Y, Zhou J, Dai Q, Wu Y (2012) The characteristics of waste Saccharomyces cerevisiae biosorption of arsenic (III). Environ Sci Pollut Res 19:3371–3379

    Article  CAS  Google Scholar 

  • Wu Y, Wen Y, Zhou J, Cao J, Jin Y, Wu Y (2013) Comparative and competitive adsorption of Cr (VI), As (III), and Ni (II) onto coconut charcoal. Environ Sci Pollut Res 20:2210–2219

    Article  CAS  Google Scholar 

  • Xiang L, Chan LC, Wong JWC (2000) Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria. Chemosphere 41:283–287

    Article  CAS  Google Scholar 

  • Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Guo H, Cao Z, Yang L, Chen J, Xi Q (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101:1668–1674

    Article  CAS  Google Scholar 

  • Xie S, Yang J, Chen C, Zhang X, Wang Q, Zhang C (2008) Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J Environ Radioact 99:126–133

    Article  CAS  Google Scholar 

  • Yahaya YA, Mat Don M, Bhatia S (2009) Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: equilibrium and kinetic studies. J Hazard Mater 161:189–195

    Article  CAS  Google Scholar 

  • Yan G, Viraraghavan T (2001) Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresour Technol 78:243–249

    Article  CAS  Google Scholar 

  • Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496

    Article  CAS  Google Scholar 

  • Yao ZY, Qi JH, Wang LH (2010) Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell. J Hazard Mater 174:137–143

    Article  CAS  Google Scholar 

  • Yu Q, Matheickal JT, Yin P, Kaewsarn P (1999) Heavy metal uptake capacities of common marine macro algal biomass. Water Res 33:1534–1537

    Article  CAS  Google Scholar 

  • Yu B, Zhang Y, Shukla A, Shukla S, Dorris KL (2001) The removal of heavy metals from aqueous solutions by sawdust adsorption– removal of lead and comparison of its adsorption with copper. J Hazard Mater 84:83–94

    Article  CAS  Google Scholar 

  • Zabihi M, Ahmadpour A, Asl AH (2009) Removal of mercury from water by carbonaceous sorbents derived from walnut shell. J Hazard Mater 167:230–236

    Article  CAS  Google Scholar 

  • Zafar MN, Nadeem R, Hanif MA (2007) Biosorption of nickel from protonated rice bran. J Hazard Mater 143:478–485

    Article  CAS  Google Scholar 

  • Zouboulis AI, Loukidou MX, Matis KA (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916

    Article  CAS  Google Scholar 

  • Zulkali MMD, Ahmed AC, Norulakmal NH (2006) Oriza sativa husk as heavy metal adsorbent: optimization with lead as model solution. Bioresour Technol 97:21–25

    Article  CAS  Google Scholar 

  • Zvinowanda CM, Okonkwo JO, Sekhula MM, Agyei NM, Sadiku R (2009a) Application of maize tassel for the removal of Pb, Se, Sr, U and V from borehole water contaminated with mine wastewater in the presence of alkaline metals. J Hazard Mater 164:884–891

    Article  CAS  Google Scholar 

  • Zvinowanda CM, Okonkwo JO, Shabalala PN, Agyei NM (2009b) A novel adsorbent for heavy metal remediation in aqueous environments. Int J Environ Sci Technol 6:425–434

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge all the necessary facilities provided by the Head, Department of Botany, Banaras Hindu University and Department of Chemical Engineering, Indian Institute of Technology (Banaras Hindu University), India to undertake the work. Authors also thank UGC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Mondal.

Additional information

Responsible editor: Philippe Garrigues

Highlights

• The present communication highlights about various adsorbents and their potential for heavy metal adsorption from all the possible origin and their critical analysis.

• Advantages and disadvantages of various conventional wastewater treatment methods for heavy metal removal were discussed.

• Various techniques for preparation and activation of adsorbents were reviewed in details.

• Instrumental techniques and critical analysis for adsorbent characterization for heavy metal removal were also included in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Agrawal, S.B. & Mondal, M.K. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res 22, 15386–15415 (2015). https://doi.org/10.1007/s11356-015-5278-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5278-9

Keywords

Navigation