Advertisement

Environmental Science and Pollution Research

, Volume 22, Issue 24, pp 20207–20214 | Cite as

Respective contributions of diet and medium to the bioaccumulation of pharmaceutical compounds in the first levels of an aquatic trophic web

  • Frédéric Orias
  • Laurent Simon
  • Yves Perrodin
Research Article

Abstract

Nowadays, pharmaceuticals (PCs) are ubiquitous in aquatic ecosystems. It is known that these compounds have ecotoxic effects on aquatic organisms at low concentrations. Moreover, some of them can bioaccumulate inside organisms or trophic webs exposed at environmental concentrations and amplify ecotoxic impacts. PCs can bioaccumulate in two ways: exposure to a medium (e.g., respiration, diffusion, etc.) and/or through the dietary route. Here, we try to assess the respective contributions of these two forms of contamination of the first two levels of an aquatic trophic web. We exposed Daphnia magna for 5 days to 0, 5, and 50 μg/L 15N-tamoxifen and then fed them with control and contaminated diets. We used an isotopic method to measure the tamoxifen content inside the daphnids after several minutes’ exposure and every day before and after feeding. We found that tamoxifen is very bioaccumulative inside daphnids (BCF up to 12,000) and that the dietary route has a significant impact on contamination by tamoxifen (BAF up to 22,000), especially at low concentrations in medium.

Keywords

Bioconcentration Bioaccumulation Pharmaceutical compound Tamoxifen Stable isotopes 

Notes

Acknowledgments

The authors thank the SIPIBEL field observatory on hospital effluents and urban wastewater treatment plants, the European Union, the Rhone-Mediterranean Corsica Water Agency, the Rhône-Alpes Region, the Ministries of Health and the Environment, the Regional Office of Health, and the General Council of Haute-Savoie for their support.

References

  1. AFNOR (1980) Détermination de l’inhibition de la croissance de Scenedesmus subspicatus par une substanceGoogle Scholar
  2. Anskjær G, Rendal C, Kusk K (2013) Effect of pH on the toxicity and bioconcentration of sulfadiazine on Daphnia magna. Chemosphere 91(8):1183–1188Google Scholar
  3. Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB (2008) A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) Groundwater. Sci Total Environ 402:192–200. doi: 10.1016/j.scitotenv.2008.04.028 CrossRefGoogle Scholar
  4. Bertin D, Ferrari BJD, Labadie P, Sapin A, Garric J, Budzinski H, Houde M, Babut M (2014) Bioaccumulation of perfluoroalkyl compounds in midge (Chironomus riparius) larvae exposed to sediment. Environ Pollut 189:27–34. doi: 10.1016/j.envpol.2014.02.018 CrossRefGoogle Scholar
  5. Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93:2116–2123. doi: 10.1016/j.chemosphere.2013.07.057 CrossRefGoogle Scholar
  6. Chiaia-Hernandez AC, Ashauer R, Moest M, Hollingshaus T, Jeon J, Spaak P, Hollender J (2013) Bioconcentration of organic contaminants in daphnia resting eggs. Environ Sci Technol 47:10667–10675. doi: 10.1021/es401763d CrossRefGoogle Scholar
  7. Claessens M, Vanhaecke L, Wille K, Janssen CR (2013) Emerging contaminants in Belgian marine waters: single toxicant and mixture risks of pharmaceuticals. Mar Pollut Bull 71:41–50. doi: 10.1016/j.marpolbul.2013.03.039 CrossRefGoogle Scholar
  8. Clément B, Zaid S (2004) A new protocol to measure the effects of toxicants on daphnid–algae interactions. Chemosphere 55(10):1429–1438Google Scholar
  9. Coetsier CM, Spinelli S, Lin L, Roig B, Touraud E (2009) Discharge of pharmaceutical products (PPs) through a conventional biological sewage treatment plant: MECs vs PECs? Environ Int 35:787–792. doi: 10.1016/j.envint.2009.01.008 CrossRefGoogle Scholar
  10. Coplen TB (2011) Guidelines and recommended terms for expression of stableisotope-ratio and gas-ratiom easurement results. Rapid Commun Mass Spectrom 25:2538–2560Google Scholar
  11. Correa-Reyes G, Viana MT, Marquez-Rocha FJ, Licea AF, Ponce E, Vazquez-Duhalt R (2007) Nonylphenol algal bioaccumulation and its effect through the trophic chain. Chemosphere 68:662–670. doi: 10.1016/j.chemosphere.2007.02.030 CrossRefGoogle Scholar
  12. Dai Z, Xia X, Guo J, Jiang X (2013) Bioaccumulation and uptake routes of perfluoroalkyl acids in daphnia magna. Chemosphere 90:1589–1596. doi: 10.1016/j.chemosphere.2012.08.026 CrossRefGoogle Scholar
  13. Dussault ÈB, Balakrishnan VK, Borgmann U, Solomon KR, Sibley PK (2009) Bioaccumulation of the synthetic hormone 17α-ethinylestradiol in the benthic invertebrates Chironomus tentans and Hyalella azteca. Ecotoxicol Environ Saf 72:1635–1641. doi: 10.1016/j.ecoenv.2009.04.019 CrossRefGoogle Scholar
  14. Fick J, Söderström H, Lindberg RH, Phan C, Tysklind M, Larsson DGJ (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28:2522–2527. doi: 10.1897/09-073.1 CrossRefGoogle Scholar
  15. Geyer HJ, Scheunert I, Brüggemann R, Steinberg C, Korte F, Kettrup A (1991) QSAR for organic chemical bioconcentration in Daphnia, algae, and mussels. QSAR Environ Toxicol 109–110:387–394. doi: 10.1016/0048-9697(91)90193-I Google Scholar
  16. Jean J, Perrodin Y, Pivot C, Trepo D, Perraud M, Droguet J, Tissot-Guerraz F, Locher F (2012) Identification and prioritization of bioaccumulable pharmaceutical substances discharged in hospital effluents. J Environ Manage 103:113–121. doi: 10.1016/j.jenvman.2012.03.005 CrossRefGoogle Scholar
  17. Jeon J, Kurth D, Hollender J (2013) Biotransformation pathways of biocides and pharmaceuticals in freshwater crustaceans based on structure elucidation of metabolites using high resolution mass spectrometry. Chem Res Toxicol 26:313–324. doi: 10.1021/tx300457f CrossRefGoogle Scholar
  18. Kim HY, Jeon J, Hollender J, Yu S, Kim SD (2014) Aqueous and dietary bioaccumulation of antibiotic tetracycline in D. magna and its multigenerational transfer. J Hazard Mater 279:428–435. doi: 10.1016/j.jhazmat.2014.07.031 CrossRefGoogle Scholar
  19. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999 − 2000: a national reconnaissance. Environ Sci Technol 36:1202–1211. doi: 10.1021/es011055j CrossRefGoogle Scholar
  20. Lajeunesse A, Gagnon C, Gagné F, Louis S, Čejka P, Sauvé S (2011) Distribution of antidepressants and their metabolites in brook trout exposed to municipal wastewaters before and after ozone treatment—evidence of biological effects. Chemosphere 83:564–571. doi: 10.1016/j.chemosphere.2010.12.026 CrossRefGoogle Scholar
  21. Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157:561–568. doi: 10.1016/j.envpol.2008.09.020 CrossRefGoogle Scholar
  22. Loos R, Locoro G, Comero S, Contini S, Schwesig D, Werres F, Balsaa P, Gans O, Weiss S, Blaha L, Bolchi M, Gawlik BM (2010) Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res 44:4115–4126. doi: 10.1016/j.watres.2010.05.032 CrossRefGoogle Scholar
  23. Lopes C, Persat H, Babut M (2012) Transfer of PCBs from bottom sediment to freshwater river fish: a food-web modelling approach in the Rhône River (France) in support of sediment management. Ecotoxicol Environ Saf 81:17–26. doi: 10.1016/j.ecoenv.2012.04.007 CrossRefGoogle Scholar
  24. López-Serna R, Petrović M, Barceló D (2012) Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain). Sci Total Environ. doi: 10.1016/j.scitotenv.2012.06.027 Google Scholar
  25. Meredith-Williams M, Carter LJ, Fussell R, Raffaelli D, Ashauer R, Boxall ABA (2012) Uptake and depuration of pharmaceuticals in aquatic invertebrates. Environ Pollut 165:250–258Google Scholar
  26. Montiglio P-O, Royauté R (2014) Contaminants as a neglected source of behavioural variation. Anim Behav 88:29–35. doi: 10.1016/j.anbehav.2013.11.018 CrossRefGoogle Scholar
  27. Muñoz MJ, Ramos C, Tarazona J (1996) Bioaccumulation and toxicity of hexachlorobenzene in chlorella vulgaris and daphnia magna. Aquat Toxicol 35:211–220. doi: 10.1016/0166-445X(96)00010-0 CrossRefGoogle Scholar
  28. Orias F, Simon L, Perrodin Y (2015) Experimental assessment of the bioconcentration of 15N-tamoxifen in Pseudokirchneriella subcapitata. Chemosphere 122:251–256. doi: 10.1016/j.chemosphere.2014.11.070 CrossRefGoogle Scholar
  29. Roberts PH, Thomas KV (2006) The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci Total Environ 356:143–153. doi: 10.1016/j.scitotenv.2005.04.031 CrossRefGoogle Scholar
  30. Schultz MM, Furlong ET, Kolpin DW, Werner SL, Schoenfuss HL, Barber LB, Blazer VS, Norris DO, Vajda AM (2010) Antidepressant pharmaceuticals in two U.S. Effluent-impacted streams: occurrence and fate in water and sediment, and selective uptake in fish neural tissue. Environ Sci Technol 44:1918–1925. doi: 10.1021/es9022706 CrossRefGoogle Scholar
  31. Thomas KV, Hilton MJ (2004) The occurrence of selected human pharmaceutical compounds in UK estuaries. Mar Pollut Bull 49:436–444. doi: 10.1016/j.marpolbul.2004.02.028 CrossRefGoogle Scholar
  32. Vazquez-Roig P, Andreu V, Blasco C, Picó Y (2012) Risk assessment on the presence of pharmaceuticals in sediments, soils and waters of the Pego–Oliva Marshlands (Valencia, eastern Spain). Sci Total Environ 440:24–32. doi: 10.1016/j.scitotenv.2012.08.036 CrossRefGoogle Scholar
  33. Yang Y, Fu J, Peng H, Hou L, Liu M, Zhou JL (2011) Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone. J Hazard Mater 190:588–596. doi: 10.1016/j.jhazmat.2011.03.092 CrossRefGoogle Scholar
  34. Zenker A, Cicero MR, Prestinaci F, Bottoni P, Carere M (2014) Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. J Environ Manage 133:378–387. doi: 10.1016/j.jenvman.2013.12.017 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Frédéric Orias
    • 1
  • Laurent Simon
    • 1
  • Yves Perrodin
    • 1
  1. 1.Université de Lyon; ENTPE; Université Lyon 1; CNRS; UMR 5023 LEHNAVaulx-en-VelinFrance

Personalised recommendations