Environmental Science and Pollution Research

, Volume 23, Issue 2, pp 1193–1202

Reduction of selenite to elemental selenium nanoparticles by activated sludge

  • Rohan Jain
  • Silvio Matassa
  • Satyendra Singh
  • Eric D. van Hullebusch
  • Giovanni Esposito
  • Piet N. L. Lens
Research Article


Total selenium removal by the activated sludge process, where selenite is reduced to colloidal elemental selenium nanoparticles (BioSeNPs) that remain entrapped in the activated sludge flocs, was studied. Total selenium removal efficiencies with glucose as electron donor (2.0 g chemical oxygen demand (COD) L−1) at neutral pH and 30 °C gave 2.9 and 6.8 times higher removal efficiencies as compared to the electron donors lactate and acetate, respectively. Total selenium removal efficiencies of 79 (±3) and 86 (±1) % were achieved in shake flasks and fed batch reactors, respectively, at dissolved oxygen (DO) concentrations above 4.0 mg L−1 and 30 °C when fed with 172 mg L−1 (1 mM) Na2SeO3 and 2.0 g L−1 COD of glucose. Continuously operated reactors operating at neutral pH, 30 °C and a DO >3 mg L−1 removed 33.98 and 36.65 mg of total selenium per gram of total suspended solids (TSS) at TSS concentrations of 1.3 and 3.0 g L−1, respectively. However, selenite toxicity to the activated sludge led to failure of a continuously operating activated sludge reactor at the applied loading rates. This suggests that a higher hydraulic retention time (HRT) or different reactor configurations need to be applied for selenium-removing activated sludge processes.

Graphical Abstract

Scheme representing the possible mechanisms of selenite reduction at high and low DO levels in the activated sludge process


Activated sludge Selenium removal Dissolved oxygen Selenite Elemental selenium Toxicity 


  1. Ahammad SZ, Davenport RJ, Read LF, Gomes J, Sreekrishnan TR, Dolfing J (2013) Rational immobilization of methanogens in high cell density bioreactors. RSC Adv 3:774–781Google Scholar
  2. APHA (2005) Standard methods for examination of water and wastewater, 5th edn. American Public Health Association, Washington, DC, USAGoogle Scholar
  3. Bai Y, Rong F, Wang H, Zhou Y, Xie X, Teng J (2011) Removal of copper from aqueous solution by adsorption on elemental selenium nanoparticles. J Chem Eng Data 56:2563–2568Google Scholar
  4. Belzile N, Wu GJ, Chen Y-W, Appanna VD (2006) Detoxification of selenite and mercury by reduction and mutual protection in the assimilation of both elements by Pseudomonas fluorescens. Sci Total Environ 367:704–14Google Scholar
  5. Buchs B, Evangelou MW-H, Winkel L, Lenz M (2013) Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness. Environ Sci Technol 47:2401–2407CrossRefGoogle Scholar
  6. Cantafio AW, Hagen KD, Lewis GE, Bledsoe TL, Nunan KM, Macy JM (1996) Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis. Appl Environ Microbiol 62:3298–303Google Scholar
  7. Dermou E, Velissariou A, Xenos D, Vayenas DV (2005) Biological chromium(VI) reduction using a trickling filter. J Hazard Mater 126:78–85CrossRefGoogle Scholar
  8. Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 9:52CrossRefGoogle Scholar
  9. Dhanjal S, Cameotra SS (2011) Selenite stress elicits physiological adaptations in Bacillus sp. (Strain JS-2). J Microbiol Biotechnol 21:1184–1192CrossRefGoogle Scholar
  10. Espinosa-Ortiz EJ, Gonzalez-Gil G, Saikaly PE, van Hullebusch ED, Lens PNL (2014) Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6127-3
  11. Ferro Orozco AM, Contreras EM, Zaritzky NE (2010) Cr(Vi) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication. J Hazard Mater 176:657–65CrossRefGoogle Scholar
  12. Haug A, Graham RD, Christophersen OA, Lyons GH (2007) How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb Ecol Health Dis 19:209–228CrossRefGoogle Scholar
  13. Hunter WJ, Manter DK (2009) Reduction of selenite to elemental red selenium by Pseudomonas sp. Strain CA5. Curr Microbiol 58:493–8CrossRefGoogle Scholar
  14. Jain R, Gonzalez-Gil G, Singh V, van Hullebusch, ED, Farges, F, Lens PNL (2014) Biogenic selenium nanoparticles: production, characterization and challenges. In: Kumar A, Govil JN (eds) Nanobiotechnology. Studium Press LLC, USA, pp 361–390Google Scholar
  15. Jain R, Jordan N, Schild D, van Hullebusch ED, Weiss S, Franzen C, Hubner R, Farges F, Lens PNL (2015a) Adsorption of zinc by biogenic elemental selenium nanoparticles. Chem Eng J 260:850–863Google Scholar
  16. Jain R, Jordan N, Weiss S, Foerstendorf H, Heim K, Kacker R, Hübner R, Kramer H, van Hullebusch ED, Farges F, Lens PNL (2015b) Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles. Environ Sci Technol 49:1713–1720Google Scholar
  17. Jain R, Seder-colomina M, Jordan N, Dessi P, Cosmidis J, van Hullebusch ED, Weiss S, Farges F, Lens PNL (2015c) Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge. J Hazard Mater 295:193–200Google Scholar
  18. Johnson NC, Manchester S, Sarin L, Gao Y, Kulaots I, Hurt RH (2008) Mercury vapor release from broken compact fluorescent lamps and in situ capture by new nanomaterial sorbents. Environ Sci Technol 42:5772–5778Google Scholar
  19. Karya NGA, van der Steen NP, Lens PNL (2013) Photo-oxygenation to support nitrification in an algal-bacterial consortium treating artificial wastewater. Bioresour Technol 134:244–50CrossRefGoogle Scholar
  20. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. John Wiley & Sons, New York, pp 115–175Google Scholar
  21. Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–33CrossRefGoogle Scholar
  22. Lenz M, van Hullebusch ED, Hommes G, Corvini PFX, Lens PNL (2008a) Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors. Water Res 42:2184–2194Google Scholar
  23. Lenz M, Smit M, Binder P, van Aelst AC, Lens PNL (2008b) Biological alkylation and colloid formation of selenium in methanogenic UASB reactors. J Environ Qual 37:1691–700Google Scholar
  24. Li D-B, Cheng Y-Y, Wu C, Li W-W, Li N, Yang Z-C, Tong Z.-H, Yu H-Q (2014) Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci Rep 4:3735Google Scholar
  25. Muyzer G, de Waal E, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain. Appl Environ Microbiol 59:695–700Google Scholar
  26. Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60Google Scholar
  27. Øvreås L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367Google Scholar
  28. Park HJ, Kim HY, Cha S, Ahn CH, Roh J, Park S, Kim S, Choi K, Yi J, Kim Y, Yoon J (2013) Removal characteristics of engineered nanoparticles by activated sludge. Chemosphere 92:524–528Google Scholar
  29. Pearce CI, Pattrick RAD, Law N, Charnock JM, Coker VS, Fellowes JW, Oremland RS, Lloyd JR (2009) Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica. Environ Technol 30:1313–26Google Scholar
  30. Rosen BP, Liu Z (2009) Transport pathways for arsenic and selenium: a minireview. Environ Int 35:512–515CrossRefGoogle Scholar
  31. Staicu LC, van Hullebusch ED, Lens PNL, Pilon-Smits EA, Oturan MA (2015) Electrocoagulation of colloidal biogenic selenium. Environ Sci Pollut Res Int 22:3127–3137Google Scholar
  32. Stasinakis AS, Thomaidis NS, Mamais D, Lekkas TD (2004) Investigation of Cr(VI) reduction in continuous-flow activated sludge systems. Chemosphere 57:1069–1077CrossRefGoogle Scholar
  33. Tejo Prakash N, Sharma N, Prakash R, Raina KK, Fellowes J, Pearce CI, Lloyd JR, Pattrick RAD (2009) Aerobic microbial manufacture of nanoscale selenium: exploiting nature’s bio-nanomineralization potential. Biotechnol Lett 31:1857–62Google Scholar
  34. Winkel L, Feldmann J, Meharg AA (2010) Quantitative and qualitative trapping of volatile methylated selenium species entrained through nitric acid. Environ Sci Technol 44:382–7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rohan Jain
    • 1
    • 3
  • Silvio Matassa
    • 1
    • 4
  • Satyendra Singh
    • 2
  • Eric D. van Hullebusch
    • 3
  • Giovanni Esposito
    • 4
  • Piet N. L. Lens
    • 1
  1. 1.UNESCO-IHEInstitute for Water EducationDelftThe Netherlands
  2. 2.Department of Biochemical Engineering and BiotechnologyIndian Institute of Technology, DelhiNew DelhiIndia
  3. 3.Laboratoire Géomatériaux et Environnement (EA 4508)Université Paris-Est, UPEMMarne la ValléeFrance
  4. 4.Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoItaly

Personalised recommendations