Environmental Science and Pollution Research

, Volume 22, Issue 23, pp 19124–19132 | Cite as

Assessment of silver nanoparticle toxicity for common carp (Cyprinus carpio) fish embryos using a novel method controlling the agglomeration in the aquatic media

  • Jakub OprsalEmail author
  • Ludek Blaha
  • Miloslav Pouzar
  • Petr Knotek
  • Milan Vlcek
  • Katerina Hrda
Research Article


Formation of agglomerates and their rapid sedimentation during aquatic ecotoxicity testing of nanoparticles is a major issue with a crucial influence on the risk assessment of nanomaterials. The present work is aimed at developing and testing a new approach based on the periodic replacement of liquid media during an ecotoxicological experiment which enabled the efficient monitoring of exposure conditions. A verified mathematical model predicted the frequencies of media exchanges which checked for formation of agglomerates from silver nanoparticles AgNP with 50 nm average size of the original colloid. In the model experiments, embryos of common carp Cyprinus carpio were exposed repeatedly for 6 h to AgNPs (5–50 μm Ag L−1) either under semistatic conditions (exchange of media after 6 h) or in variants with frequent media exchanges (varying from 20 to 300 min depending on the AgNP colloid concentration and the desired maximum agglomerate size of 200 or 400 nm). In contrast to other studies, where dissolved free metals are usually responsible for toxic effects, our 144-h experiments demonstrated the importance of AgNP agglomerates in the adverse effects of nanosilver. Direct adsorption of agglomerates on fish embryos locally increased Ag concentrations which resulted in pronounced toxicity particularly in variants with larger 400 nm agglomerates. The present study demonstrates the suitability of the novel methodology in controlling the conditions during aquatic nanomaterial toxicity testing. It further provided insights into the mechanisms underlying the effects of AgNP, which rank on a global scale among the most widely used nanomaterials.


Nanosilver Agglomeration Fish embryo Cyprinus carpio Particle size distribution 



The research was supported by the Ministry of Education of the Czech Republic grant no. LO1214.


  1. Auffan M et al (2013) Role of molting on the biodistribution of CeO2 nanoparticles within Daphnia pulex. Water Res 47:3921–3930. doi: 10.1016/j.watres.2012.11.063 CrossRefGoogle Scholar
  2. Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ 407:2093–2101. doi: 10.1016/j.scitotenv.2008.11.022 CrossRefGoogle Scholar
  3. Baalousha M, Nur Y, Römer I, Tejamaya M, Lead JR (2013) Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci Total Environ 454–455:119–131. doi: 10.1016/j.scitotenv.2013.02.093
  4. Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266. doi: 10.1021/es902240k CrossRefGoogle Scholar
  5. Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–1910. doi: 10.1002/smll.200801716 CrossRefGoogle Scholar
  6. Bian J, Berninger JP, Fulton BA, Brooks BW (2013) Nutrient stoichiometry and concentrations influence silver toxicity in the aquatic macrophyte Lemna gibba. Sci Total Environ 449:229–236. doi: 10.1016/j.scitotenv.2012.12.098 CrossRefGoogle Scholar
  7. Bilberg K, Malte H, Wang T, Baatrup E (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol 96:159–165. doi: 10.1016/j.aquatox.2009.10.019 CrossRefGoogle Scholar
  8. Bílková E, Sedlák M, Imramovský A, Chárová P, Knotek P, Beneš L (2011) Prednisolone-α-cyclodextrin-star poly(ethylene glycol) polypseudorotaxane with delayed pH-sensitivity as a targeted drug delivery system. Int J Pharm 414:42–47. doi: 10.1016/j.ijpharm.2011.04.060 CrossRefGoogle Scholar
  9. Campos B, Rivetti C, Rosenkranz P, Navas JM, Barata C (2013) Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna. Aquat Toxicol 130–131:174–183. doi: 10.1016/j.aquatox.2013.01.005 CrossRefGoogle Scholar
  10. Chen P-J, Wu W-L, Wu KC-W (2013) The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish. Water Res 47:3899–3909. doi: 10.1016/j.watres.2012.12.043 CrossRefGoogle Scholar
  11. Dash A, Singh AP, Chaudhary BR, Singh SK, Dash D (2012) Effect of silver nanoparticles on growth of eukaryotic green algae. Nano-MicroLett 4:158–165. doi: 10.3786/nml.v4i3.p158-165 Google Scholar
  12. Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim Urs 14:597–633Google Scholar
  13. EPA (2007) Nanotechnology White PaperGoogle Scholar
  14. Govender R, Phulukdaree A, Gengan RM, Anand K, Chuturgoon AA (2013) Silver nanoparticles of Albizia adianthifolia: the induction of apoptosis in human lung carcinoma cell line. J Nanobiotechnol 11:1–9. doi: 10.1186/1477-3155-11-5 CrossRefGoogle Scholar
  15. Hartmann NB, Legros S, Von der Kammer F, Hofmann T, Baun A (2012) The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. Aquat Toxicol 118–119:1–8. doi: 10.1016/j.aquatox.2012.03.008 CrossRefGoogle Scholar
  16. Kaewamatawong T, Bintvihok APWBA, Udchachon BTSKS, Maneewattanapinyo P, Ekgasit CTS (2012) Toxicity test of nanosilver particles on zebrafish (Danio rerio) embryonic development Thai. J Vet Med 42:305–310Google Scholar
  17. Karn B, Kuiken T, Otto M (2011) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Cien Saude Colet 16:165–178CrossRefGoogle Scholar
  18. Kashiwada S et al (2012) Silver nanocolloids disrupt medaka embryogenesis through vital gene expressions. Environ Sci Technol 46:6278–6287. doi: 10.1021/es2045647 CrossRefGoogle Scholar
  19. Laban G, Nies L, Turco R, Bickham J, Sepúlveda M (2010) The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19:185–195. doi: 10.1007/s10646-009-0404-4 CrossRefGoogle Scholar
  20. Lapresta-Fernández A, Fernández A, Blasco J (2012) Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trends Anal Chem 32:40–59. doi: 10.1016/j.trac.2011.09.007 CrossRefGoogle Scholar
  21. Lee B-T, Ranville JF (2012) The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna. J Hazard Mater 213–214:434–439. doi: 10.1016/j.jhazmat.2012.02.025 CrossRefGoogle Scholar
  22. Levard C, Hotze EM, Lowry GV, Brown GE (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914. doi: 10.1021/es2037405 CrossRefGoogle Scholar
  23. Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Brown GE (2013) Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol 47:5738–5745. doi: 10.1021/es400396f CrossRefGoogle Scholar
  24. Liu W, Sun W, Borthwick AGL, Ni J (2013) Comparison on aggregation and sedimentation of titanium dioxide, titanate nanotubes and titanate nanotubes-TiO2: influence of pH, ionic strength and natural organic matter. Colloids Surf A 434:319–328. doi: 10.1016/j.colsurfa.2013.05.010 CrossRefGoogle Scholar
  25. Massarsky A, Dupuis L, Taylor J, Eisa-Beygi S, Strek L, Trudeau VL, Moon TW (2013) Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere 92:59–66. doi: 10.1016/j.chemosphere.2013.02.060 CrossRefGoogle Scholar
  26. Mudunkotuwa IA, Grassian VH (2011) The devil is in the details (or the surface): impact of surface structure and surface energetics on understanding the behavior of nanomaterials in the environment. J Environ Monit 13:1135–1144. doi: 10.1039/C1EM00002K CrossRefGoogle Scholar
  27. Navarro E et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386. doi: 10.1007/s10646-008-0214-0 CrossRefGoogle Scholar
  28. Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177–1183. doi: 10.1021/es103316q CrossRefGoogle Scholar
  29. OECD (1992) Test No. 203: Fish, acute toxicity test. OECD PublishingGoogle Scholar
  30. OECD (1998) Test No. 212: Fish, short-term toxicity test on embryo and Sac-Fry stages. OECD Publishing. doi: 10.1787/9789264070141-en
  31. Oprsal J, Bures Z, Vlcek M, Knotek P, Pouzar M, Benes L (2013a) A study of silver nanoparticles behavior in liquid media for ecotoxicity tests. Adv Sci Eng Med 5:589–592. doi: 10.1166/asem.2013.1318 CrossRefGoogle Scholar
  32. Oprsal J, Knotek P, Pouzar M (2013b) Impact of the silver nanoparticles agglomeration on the results of ecotoxicity tests on aquatic organisms. Chem List 107:386–392Google Scholar
  33. Quik JTK, van De Meent D, Koelmans AA (2014) Simplifying modeling of nanoparticle aggregation–sedimentation behavior in environmental systems: a theoretical analysis. Water Res 62:193–201. doi: 10.1016/j.watres.2014.05.048 CrossRefGoogle Scholar
  34. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, Radomski MW (2005) Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 146:882–893. doi: 10.1038/sj.bjp.0706386 CrossRefGoogle Scholar
  35. Reidy B, Haase A, Luch A, Dawson K, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350CrossRefGoogle Scholar
  36. Ribeiro F et al (2014) Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 466–467:232–241. doi: 10.1016/j.scitotenv.2013.06.101 CrossRefGoogle Scholar
  37. Seo J et al (2014) Effects of physiochemical properties of test media on nanoparticle toxicity to daphnia magna straus. Bull Environ Contam Toxicol 93:257–262. doi: 10.1007/s00128-014-1337-z CrossRefGoogle Scholar
  38. Srinonate A, Banlunara W, Maneewattanapinyo P, Thammacharoen C, Ekgasit S, Kaewamatawong T (2015) Acute toxicity study of nanosilver particles in tilapia (Oreochromis niloticus): pathological changes, particle bioaccumulation and metallothionien protein expression. Thai J Vet Med 45:9Google Scholar
  39. Stensberg MC et al (2014) Silver nanoparticle-specific mitotoxicity in Daphnia magna. Nanotoxicology 8:833–842. doi: 10.3109/17435390.2013.832430 CrossRefGoogle Scholar
  40. Zhu X, Tian S, Cai Z (2012) Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS ONE 7, e46286. doi: 10.1371/journal.pone.0046286 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jakub Oprsal
    • 1
    Email author
  • Ludek Blaha
    • 2
  • Miloslav Pouzar
    • 1
  • Petr Knotek
    • 3
  • Milan Vlcek
    • 4
  • Katerina Hrda
    • 1
  1. 1.Faculty of Chemical Technology, Institute of Environmental and Chemical EngineeringUniversity of PardubicePardubiceCzech Republic
  2. 2.Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Faculty of Chemical Technology, Department of General and Inorganic ChemistryUniversity of PardubicePardubiceCzech Republic
  4. 4.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations