Environmental Science and Pollution Research

, Volume 23, Issue 2, pp 1584–1597 | Cite as

Homogeneous static magnetic field of different orientation induces biological changes in subacutely exposed mice

  • Ivan D. Milovanovich
  • Saša Ćirković
  • Silvio R. De Luka
  • Drago M. Djordjevich
  • Andjelija Ž. Ilić
  • Tamara Popović
  • Aleksandra Arsić
  • Danilo D. Obradović
  • Dejan Oprić
  • Jasna L. Ristić-Djurović
  • Alexander M. Trbovich
Research Article


It has been shown that static magnetic field (SMF) of moderate intensity produces considerable impact on biological systems. SMF can be homogeneous or inhomogeneous. In many studies, inhomogeneous SMF was employed. Aware that inhomogeneous SMF could result in experimental variability, we investigated the influence of a vertical homogeneous SMF of different orientation. Male Swiss-Webster 9- to 10-week-old mice were subacutely exposed to upward- and downward-oriented SMF of 128 mT generated by a cyclotron for 1 h/day during a 5-day period. We found that SMF affected various organs and that these effects were, to some degree, dependent on SMF orientation. Both upward- and downward-oriented SMF caused a reduction in the amount of total white blood cells (WBC) and lymphocytes in serum, a decrease of granulocytes in the spleen, kidney inflammation, and an increase in the amount of high-density lipoprotein (HDL). In addition, upward-oriented SMF caused brain edema and increased spleen cellularity. In contrast, downward-oriented SMF induced liver inflammation and a decrease in the amount of serum granulocytes. These effects might represent a specific redistribution of pro-inflammatory cells in blood and among various organs. It appears that homogeneous SMF of 128 mT affected specific organs in the body, rather than simultaneously and equally influencing the entire body system.


Homogeneous static magnetic field of different orientation Liver Brain Kidney Spleen Serum 



This study was supported by the grant numbers III-41013, III-41019, III41030, III-45003, and III-45006 from the Ministry of Education, Science and Technological Development, Government of Serbia. The experiment was performed at the Vinča Institute of Nuclear Sciences, Laboratory of Physics (010) to whose staff we thank for enabling access to the Cyclotron, as well as for their assistance and support.

Conflict of interest

The authors declare that they have no competing interests.

Role of funding source

No funding body had any involvement in the preparation or content of this article or in the decision to submit it for publication.


  1. Abdelmelek H, Molnar S, Servais S, Cottet-Emard JM, Pequignot JM, Favier R, Sakly M (2006) Skeletal muscle HSP72 and norepinephrine response to static magnetic field in rat. J Neural Transm 113:821–827CrossRefGoogle Scholar
  2. Amara S, Abdelmelek H, Garrel C, Guiraud P, Douki T, Ravanat J, Favier A, Sakly M, Ben Rhouma K (2007) Zinc supplementation ameliorates static magnetic field-induced oxidative stress in rat tissues. Environ Toxicol Pharmacol 23:193–197CrossRefGoogle Scholar
  3. Amara S, Douki T, Garel C, Fevier A, Sakly M, Ben Rhouma K, Abdelmelek H (2009) Effects of static magnetic field exposure on antioxidative enzymes activity and DNA in rat brain. Gen Physiol Biophys 28:260–265CrossRefGoogle Scholar
  4. Bancroft JD, Gamble M (2001) Theory and practice of histological techniques. 5th ed. Churchill Livingstone, EdinburghGoogle Scholar
  5. Barry SM, Condez A, Johnson MA, Janossy G (2002) Determination of bronchoalveolar lavage leukocyte populations by flow cytometry in patients investigated for respiratory disease. Cytometry 50(6):291–297CrossRefGoogle Scholar
  6. Bras W, Diakun GP, DíazJF MG, Kramer H, Bordas J, Medrano FJ (1998) The susceptibility of pure tubulin to high magnetic fields: a magnetic birefringence and X-ray fiber diffraction study. Biophys J 74:1509–1521CrossRefGoogle Scholar
  7. Cakir DU, Yokus B, Akdag MZ, Sert C, Mete N (2009) Alterations of hematological variations in rats exposed to extremely low frequency magnetic fields (50 Hz). Arch Med Res 40:352–356CrossRefGoogle Scholar
  8. Chater S, Abdelmelek H, Douki T, Garrel C, Favier A, Sakly M, Ben Rhouma K (2006) Exposure to static magnetic field of pregnant rats induces hepatic GSH elevation but not oxidative DNA damage in liver and kidney. Arch Med Res 37:941–946CrossRefGoogle Scholar
  9. Chionna A, Dwikat M, Panzarini E, Tenuzzo B, Carlà EC, Verri T, Pagliara P, Abbro L, Dini L (2003) Cell shape and plasma membrane alterations after static magnetic fields exposure. Eur J Histochem 47(4):299–308Google Scholar
  10. Colbert AP, Wahbeh H, Harling N, Connelly E, Schiffke HC, Forsten C, Gregory WL, Markov MS, Souder JJ, Elmer P, King V (2009) Static magnetic field therapy: a critical review of treatment parameters. Evid-Based Complement Alternat Med 6:133–139CrossRefGoogle Scholar
  11. Csillag A, Kumar BV, Szabó K, Szilasi M, Papp Z, Szilasi ME, Pázmándi K, Boldogh I, Rajnavölgyi É, Bácsi A, László JF (2014) Exposure to inhomogeneous static magnetic field beneficially affects allergic inflammation in a murine model. J R Soc Interface 11:20140097CrossRefGoogle Scholar
  12. Cvetković Z, Vučić V, Cvetković B, Petrović M, Ristić-Medić D, Tepšić J, Glibetić M (2010) Abnormal fatty acid distribution of the serum phospholipids of patients with non-Hodgkin lymphoma. Ann Hematol 89:775–782CrossRefGoogle Scholar
  13. Ćirković S, Ristić-Djurović JL, Ilić AŽ, Vujović V, Nešković N (2008) Comparative analysis of methods for isochronous magnetic field calculation. IEEE Trans Nucl Sci 55(6):3531–3538CrossRefGoogle Scholar
  14. Ćirković S, Ristić-Djurović JL, Vorozhtsov AS, Ilić AŽ, Nešković N (2009) Method for fine magnet shaping in cyclotrons. IEEE Trans Nucl Sci 56(5):2821–2827CrossRefGoogle Scholar
  15. Dini L, Abbro L (2005) Bioeffects of moderate-intensity static magnetic fields. Micron 36:195–217CrossRefGoogle Scholar
  16. Djordjevich DM, De Luka SR, Milovanovich ID, Janković S, Stefanović S, Vesković-Moračanin S, Ćirković S, Ilić AŽ, Ristić-Djurović JL, Trbovich AM (2012) Hematological parameters’ changes in mice subchronically exposed to static magnetic fields of different orientations. Ecotoxicol Environ Saf 81:98–105CrossRefGoogle Scholar
  17. Elferchichi M, Abdelmelek H, Sakly M (2007) Effects of sub-acute exposure to static magnetic field on iron status and hematopoiesis in rats. Turk J Hematol 24:64–68Google Scholar
  18. Elferchichi M, Mercier J, Coisy-Quivy M, Metz L, Lajoix A, Rene Gross R, Belguith H, Abdelmelek H, Sakly M, Lambert K (2010) Effects of exposure to a 128-mT static magnetic field on glucose and lipid metabolism in serum and skeletal muscle of rats. Arch Med Res 41:309–314CrossRefGoogle Scholar
  19. Erdinest N, Shmueli O, Grossman Y, Ovadia H, Solomon A (2012) Anti-inflammatory effects of alpha linolenic acid on human corneal epithelial cells. Invest Ophtalmol Vis Sci 53(8):4396–406CrossRefGoogle Scholar
  20. Felgar RE, Macon WR, Kinney MC, Roberts S, Pasha T, Salhany KE (1997) TIA-1 expression in lymphoid neoplasms. Identification of subsets with cytotoxic T lymphocyte or natural killer cell differentiation. Am J Pathol 150:1893–1900Google Scholar
  21. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509Google Scholar
  22. Ghodbane S, Amara S, Garrel C, Arnaud J, Ducros V, Favier A, Sakly M, Abdelmelek H (2011) Selenium supplementation ameliorates static magnetic field-induced disorders in antioxidant status in rat tissues. Environ Toxicol Pharmacol 31:100–106CrossRefGoogle Scholar
  23. Ghodbane S, Lahbib A, Sakly M, Abdelmelek H (2013) Bioeffects of static magnetic fields: oxidative stress, genotoxic effects and cancer studies. Biomed Res Int 2013:602987. doi: 10.1155/2013/602987 CrossRefGoogle Scholar
  24. Ghodbane S, Amara S, Lahbib A, Louchami K, Sener A, Sakly M, Abdelmelek H (2014) Vitamin E prevents glucose metabolism alterations induced by static magnetic field in rats. Environ Sci Poll Res 21(22):12731–12738CrossRefGoogle Scholar
  25. Green EL (1966) Biology of the laboratory mouse. Dover publications, New YorkGoogle Scholar
  26. Hashish AH, El-Missiry MA, Abdelkader HI, Abou-Saleh RH (2008) Assessment of biological changes of continuous whole body exposure to static magnetic field and extremely low frequency electromagnetic fields in mice. Ecotoxicol Environ Saf 71:895–902CrossRefGoogle Scholar
  27. Heinrich A, Szostek A, Nees F, Meyer P, Semmler W, Flor H (2011) Effects of static magnetic fields on cognition, vital signs, and sensory perception: a meta analysis. J Magn Reson Imaging 34(4):758–763CrossRefGoogle Scholar
  28. Kiss B, László JF, Szalai A, Pórszász R (2015) Analysis of the effect of locally applied inhomogeneous static magnetic field-exposure on mouse ear edema—a double blind study. PLoS ONE 10(2), e0118089CrossRefGoogle Scholar
  29. Kremmyda L-S, Tvrzicka E, Stankova B, Zak A (2011) Fatty acids as biocompounds: their role in human metabolism, health and disease—a review. Part 2: fatty acid physiological roles and applications in human health and disease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 155(3):195–218CrossRefGoogle Scholar
  30. Lahbib A, Elferchichi M, Ghodbane S, Belguith H, Chater S, Sakly M, Abdelmelek H (2010) Time-dependent effects of exposure to static magnetic field on glucose and lipid metabolism in rat. Gen Physiol Biophys 29:390–395CrossRefGoogle Scholar
  31. László J, Reiczigel J, Székely L, Gasparics A, Bogár I, Bors L, Rácz B, Gyires K (2007) Optimization of static magnetic field parameters improves analgesic effect in mice. Bioelectromagnetics 28:615–627. doi: 10.1002/bem.20341 CrossRefGoogle Scholar
  32. László J, Gyires K (2009) 3 T homogeneous static magnetic field of a clinical MR significantly inhibits pain in mice. Life Sci 84:12–17CrossRefGoogle Scholar
  33. László JF, Hernádi L (2012) Whole body static magnetic field exposure increases thermal nociceptive threshold in the snail, Helix pomatia. Acta Biol Hung 63(4):441–452CrossRefGoogle Scholar
  34. László JF, Farkas P, Reiczigel J, Vágó P (2012) Effect of local exposure to inhomogeneous static magnetic field on stomatological pain sensation—a double-blind, randomized, placebo-controlled study. Int J Radiat Biol 88(5):430–438CrossRefGoogle Scholar
  35. Lizenko MV, Regerand TI, Bakhirev AM, Lizenko EI (2008) Comparative biochemical analysis of lipids of blood serum-lipoproteins of human and some animal species. J Evol Biochem Physiol 44(5):581–590CrossRefGoogle Scholar
  36. McGarry JD (2002) Lipid metabolism I. In: Devlin TM (ed) Texbook of biochemistry with clinical correlations, 5th edn. Wiley-Liss, New York, pp 693–726Google Scholar
  37. Mihoub M, El May A, Aloui A, Chatti A, Landoulsi A (2012) Effects of static magnetic fields on growth and membrane lipid composition of Salmonella typhimurium wild-type and dam mutant strains. Int J Food Microbiol 157:259–266CrossRefGoogle Scholar
  38. Nešković N, Ristić-Djurović J, Vorojtsov SB, Beličev P, Ivanenko IA, Ćirković S, Vorozhtsov AS, Bojović B, Dobrosavljević A, Vujović V, Čomor JJ, Pajović SB (2003) Status report of the VINCY Cyclotron, Nukleonika vol. 48 suppl. 2 (2003),—Special Issue—Proc. of the XXXIII European Cyclotron Progress Meeting, Warsaw and Krakow, Poland, September, 17–21, 2002, S135-S139Google Scholar
  39. Nikolić L, Bataveljić D, Andjus PR, Nedeljković M, Todorović D, Janać B (2013) Changes in the expression and current of the Na+/K+ pump in the snail nervous system after exposure to a static magnetic field. J Exp Biol 216(18):3531–3541CrossRefGoogle Scholar
  40. Oguzhan B, Sancho V, Acitores A, Villanueva-Peñacarrillo M-L, Portois L, Chardigny J-M, Sener A, Carpentier YA, Malaisse WJ (2006) Alteration of adipocyte metabolism in ω3 fatty acid-depleted rats. Horm Metab Res 38(12):789–798CrossRefGoogle Scholar
  41. Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111:1805–1812CrossRefGoogle Scholar
  42. Perona JS, Vögler O, Sánchez-Domínquez JM, Montero E, Escribá PV, Ruiz-Gutierrez V (2007) Consumption of virgin olive oil influences membrane lipid composition and regulates intracellular signaling in elderly adults with type 2 diabetes mellitus. J Gerontol A Biol Sci Med Sci 62(3):256–263CrossRefGoogle Scholar
  43. Pinkus GS, Said JW (1988) Hodgkin’s disease, lymphocyte predominance type, nodular-further evidence for a B cell derivation. L & H variants of Reed-Sternberg cells express L26, a pan B cell marker. Am J Pathol 133:211–217Google Scholar
  44. Poniedzialek B, Rzymski P, Karczewski J, Jaroszyk F, Wiktorowicz K (2013) Reactive oxygen species (ROS) production in human peripheral blood neutrophils exposed in vitro to static magnetic field. Electromagn Biol Med 32(4):560–568CrossRefGoogle Scholar
  45. Ren J, Han EJ, Chung SH (2007) In vivo and in vitro anti-inflammatory activities of alpha-linolenic acid isolated from Actinidia polygama fruits. Arch Pharm Res 30(6):708–714CrossRefGoogle Scholar
  46. Rigotti A, Marzolo MP, Nervi F (1994) Lipid transport from the hepatocyte into the bile. Curr Top Memb 40:579–615CrossRefGoogle Scholar
  47. Rosen AD (1993) A proposed mechanism for the action of strong static magnetic fields on biomembranes. Int J Neurosci 73:115–119CrossRefGoogle Scholar
  48. Rosen AD (2003) Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys 39(2):163–173CrossRefGoogle Scholar
  49. Sahebjamei H, Abdolmaleki P, Ghanati F (2007) Effects of magnetic field on the antioxidant enzyme activities of suspension-cultured tobacco cells. Bioelectromagnetics 28:42–47CrossRefGoogle Scholar
  50. Saunders R (2005) Static magnetic fields: animal studies. Prog Biophys Mol Biol 87:225–239CrossRefGoogle Scholar
  51. Schenck JF (2005) Physical interactions of static magnetic fields with living tissues. Prog Biophys Mol Biol 87:185–204CrossRefGoogle Scholar
  52. Soto-Vaca A, Losso JN, McDonough K, Finley JW (2013) Differential effect of 14 free fatty acids in the expression of inflammation markers on human arterial coronary cells. J Agric Food Chem 61(42):10074–10079CrossRefGoogle Scholar
  53. Staiger H, Staiger K, Stefan N, Wahl HG, Machicao F, Kellerer M, Häring HU (2004) Palmitate-induced interleukin-6 expression in human coronary artery endothelial cells. Diabetes 53:3209–3216CrossRefGoogle Scholar
  54. Tepšić V, Pavlović M, Ristić-Medić D, Ristić V, Lekić N, Tepšić J, Debeljak-Martačić J, Milićević M, Glibetić M (2008) Influence of dietary fats on serum phospholipid fatty acid composition and its relation to obesity in animals. Acta Vet 58:33–41CrossRefGoogle Scholar
  55. Todorović D, Perić-Mataruga V, Mirčić D, Ristić-Djurović J, Prolić Z, Petković B, Savić T (2015) Estimation of changes in fitness components and antioxidant defense of Drosophila subobscura (Insecta, Diptera) after exposure to 2.4 T strong magnetic field. Environ Sci Pollut Res 22:5305–5314. doi: 10.1007/s11356-014-3910-8 CrossRefGoogle Scholar
  56. Vergallo C, Dini L, Szamosvölgyi Z, Tenuzzo BA, Carata E, Panzarini E, László JF (2013) In vitro analysis of the anti-inflammatory effect of inhomogeneous static magnetic field-exposure on human macrophages and lymphocytes. PLoS ONE 8(8), e72374CrossRefGoogle Scholar
  57. Watanabe Y, Nakagawa M, Miyakoshi Y (1997) Enhancement of lipid peroxidation in the liver of mice exposed to magnetic field. Industrial Health 35:285–230CrossRefGoogle Scholar
  58. Wu D, Liu J, Pang X, Wang S, Zhao J, Zhang X, Feng L (2014) Palmitic acid exerts pro-inflammatory effects on vascular smooth muscle cells by inducing the expression of C-reactive protein, inducible nitric oxide synthase and tumor necrosis factor-α. Int J Mol Med 34(6):1706–12Google Scholar
  59. Xu S, Okano H, Tomita N, Ikada Y (2011) Recovery effects of a 180 mT static magnetic field on bone mineral density of osteoporotic lumbar vertebrae in ovariectomized rats. eCAM 2011:ID620984:1–8Google Scholar
  60. Zhao G, Chen S, Wang L, Zhao Y, Wang J, Wang X, Zhang WW, Wu R, Wu L, Wu Y, Xu A (2011) Cellular ATP content was decreased by a homogeneous 8.5 T static magnetic field exposure: role of reactive oxygen species. Bioelectromagnetics 32:94–101CrossRefGoogle Scholar
  61. Zhou BR, Zhang JA, Zhang Q, Permatasari F, Xu Y, Wu D, Yin ZQ, Luo D (2013) Palmitic acid induces production of proinflammatory cytokines interleukin-6, interleukin-1β, and tumor necrosis factor-α via a Nf-κB-dependent mechanism in HaCaT keratinocytes. Mediators Inflamm 2013:530429. doi: 10.1155/2013/530429 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ivan D. Milovanovich
    • 1
  • Saša Ćirković
    • 2
  • Silvio R. De Luka
    • 1
  • Drago M. Djordjevich
    • 1
  • Andjelija Ž. Ilić
    • 2
  • Tamara Popović
    • 3
  • Aleksandra Arsić
    • 3
  • Danilo D. Obradović
    • 4
  • Dejan Oprić
    • 4
  • Jasna L. Ristić-Djurović
    • 2
  • Alexander M. Trbovich
    • 1
  1. 1.Department of Pathological Physiology, School of MedicineUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Physics, University of BelgradeZemun-BelgradeSerbia
  3. 3.Institute for Medical Research University of Belgrade, Laboratory for Nutrition and MetabolismBelgradeSerbia
  4. 4.Department of Pathology, School of MedicineUniversity of BelgradeBelgradeSerbia

Personalised recommendations