Skip to main content

Acute and sub-chronic toxicity of four cytostatic drugs in zebrafish

Abstract

The acute and sub-chronic effects of four cytostatic drugs—5-fluorouracil (5-FU), cisplatin (CisPt), etoposide (ET) and imatinib mesylate (IM)—on zebrafish (Danio rerio) were investigated. Acute tests were carried out in a static system in accordance with the OECD guideline 203 for adult fish and the draft guideline for fish embryos (FET test) in order to find the LC50 values of the four cytostatic drugs. Early-life stage toxicity test on zebrafish was conducted according the OECD guideline 210 using the cytostatic drugs 5-FU and IM in a semistatic system with the objective of investigating the sub-chronic effects of the cytostatic drugs on fish. In adult fish, the cytostatic drugs 5-FU and ET did not pass the limit test, thus, are considered non-toxic. In case of cisplatin, LC50 was calculated at 64.5 mg L−1, whereas in case of IM, LC50 was at 70.8 mg L−1. In the FET test, LC50 of 5-FU at 72-h post fertilization (hpf) was 2441.6 mg L−1. In case of CisPt, LC50 was 349.9 mg L−1 at 48 hpf and it progressively decreased to 81.3 mg L−1 at 120 hpf. In addition, CisPt caused a significant delay in the hatch of larvae. In case of ET, LC50 values were not calculable as they were higher than 300 mg L−1 at which concentration the substance crystallized in the solution. LC50 values of IM were 48 hpf; 158.3 mg L−1 , 72 hpf; 141.6 mg L−1, 96 hpf; 118.0 mg L−1, and 120 hpf; 65.9 mg L−1. In the Early-life Stage Test with 5-FU, embryonic deformities were not detected during the tests. Regarding mortalities, the 10 mg L−1 concentration can be considered as LOEC, as statistically significant difference in mortalities was detected in this group alone. Concerning dry body weight and standard length, 1 mg L−1 is the LOEC. In case of IM, the highest tested concentration (10 mg L−1) can be considered LOEC for mortalities, however, the treatment did not have an effect on the other investigated parameters (dry and wet weight, standard length). All four cytostatic drugs were characterized by low toxicity in zebrafish in acute and sub-chronic tests.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Backhaus T, Altenburger R, Boedeker W, Faust M, Scholze M, Grimme LH (2000) Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environ Toxicol Chem 19 (9):2348–2356

    CAS  Article  Google Scholar 

  • Bantle J, Burton DT, Dawson DA, Dumont JN, Finch RA, Fort DJ (1994) FETAX interlaboratory validation study: Phase II testing. Environ Toxicol Chem 13:1628–1637

    Article  Google Scholar 

  • Beccari E, Modigliani P, Morpurgo G (1967) Induction of inter-and intragenic mitotic recombination by fluorodeoxyuridine and fluorouracil in Aspergillus nidulans. Genetics 56(1):7

    CAS  Google Scholar 

  • Besse JP, Latour JF, Garric J (2012) Anticancer drugs in surface waters: what can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ Int 39 (1):73–86

    CAS  Article  Google Scholar 

  • Booker V, Halsall C, Llewellyn N, Johnson A, Williams R (2014) Prioritising anticancer drugs for environmental monitoring and risk assessment purposes. Sci Total Environ 473:159–170

    Article  Google Scholar 

  • Brown JD, Dutta S, Bharti K, Bonner RF, Munson PJ, Dawid IB, Akhtar AL, Onojafe IF, Alur RP, Gross JM et al (2009) Expression profiling during ocular development identifies 2 Nlz genes with a critical role in optic fissure closure. Proc Natl Acad Sci 106(5):1462–1467

    CAS  Article  Google Scholar 

  • Chu E (2007) Clinical colorectal cancer: ode to 5-fluorouracil. Clin Colorectal Cancer 6(9):609

    Article  Google Scholar 

  • Cleuvers M (2002a) Aquatische Ökotoxikologie ausgewählter Arzneimittel; Algentest und akuter Daphnientest. UWSF Z Umweltchem Ökotox 14:85–89

    CAS  Article  Google Scholar 

  • Cleuvers M (2002b) Aquatische Ökotoxikologie von Arzneimitteln. Presentation SETAC GLB Annual Meeting, Berlin, 2001. In: Ökotoxikologische Bewertung von Humanarzneimittelnin aquatischen Ökosystemen. Studien und Tagungsberichte, Landesumweltamt Brandenburg. Potsdam, Germany

  • Committee for Medicinal Products for Human Use (CHMP) (2013) Glivec, International non-proprietary name: IMATINIB. Assessment Report EMA/CHMP/161314/2013. European Medicines Agency, London, UK

    Google Scholar 

  • Dawson DA, Bantle JA (1987) Development of a reconstituted water medium and preliminary validation of the frog embryo teratogenesis assay–Xenopus (FETAX). J Appl Toxicol 7(4):237–244

    CAS  Article  Google Scholar 

  • DeYoung D, Bantle J, Hull M, Burks S (1996) Differences in sensitivity to developmental toxicants as seen in Xenopus and Pimephales embryos. Bull Environ Contam Toxicol 56(1):143–150

    CAS  Article  Google Scholar 

  • Egeler P, Seck C (2009) 5-Fluorouracil: a study on the toxicity to early-life stages of Danio rerio (zebrafish). ECT 08AZ1FV:7

  • Embry MR, Billiard S, Di Giulio R (2006) Lack of p53 induction in fish cells by model chemotherapeutics. Oncogene 25(14):2004–2010

    CAS  Article  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76 (2):122–159

    CAS  Article  Google Scholar 

  • Fick J, Lindberg RH, Tysklind M, Larsson D (2010) Predicted critical environmental concentrations for 500 pharmaceuticals. Regul Toxicol Pharmacol 58(3):516–523

    CAS  Article  Google Scholar 

  • Gaċić Z, Kolarević S, Sunjog K, Kraċun-Kolarević M, Paunović M, KneŻević-Vukċević J, Vuković-Gaċić B (2014) The impact of in vivo and in vitro exposure to base analogue 5-FU on the level of DNA damage in haemocytes of freshwater mussels Unio pictorum and Unio tumidus. Environ Pollut 191:145–150

    Article  Google Scholar 

  • Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2001) Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59(4):657–663

    CAS  Google Scholar 

  • Gröner J (1983) Biologische Abbaubarkeit und Toxizität von Fluorouracil und Natulan (für Roche Welwyn). Interne Mitteilung TSU/Nr. 52, 02/03/83, Roche, Basel (CH)

  • Hartmann A, Alder AC, Koller T, Widmer RM (1998) Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environmental Toxicology and Chemistry 17 (3):377–382

    CAS  Article  Google Scholar 

  • Hernando MD, Mezcua M, Fernández-Alba A, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69(2):334–342

    CAS  Article  Google Scholar 

  • Hignite C, Aznaroff D (1977) Drugs and drugs metabolites as environmental contaminants: chlorophenoxyisobutirate and salicylic acid in sewage effluent. Life Sciences 20:337–341

    CAS  Article  Google Scholar 

  • Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicological Sciences 86(1):6–19

    CAS  Article  Google Scholar 

  • Junker T, Seck C (2009) 5-Fluorouracil: a study on the toxicity to blue-green algae (Anabaena flos-aquae). Tech. Rep. 08AZ1AB, ECT Oekotoxikologie, Flörsheim/Main (DE) and Battelle UK, Ongar (UK)

  • Kaiser KL, Palabrica VS (1991) Photobacterium phosphoreum toxicity data index. Water Qual Res J Can 26(3):361–431

    CAS  Google Scholar 

  • Kim M, Choi J, Kim N, Han G (2014) Behavioral changes of zebrafish according to cisplatin-induced toxicity of the balance system. Hum Exp Toxicol:0960327114521046

  • Kosjek T, Heath E (2011) Occurrence, fate and determination of cytostatic pharmaceuticals in the environment. TrAC, Trends Anal Chem 30(7):1065–1087

    CAS  Article  Google Scholar 

  • Kosjek T, Dolinṡek T, Gramec D, Heath E, Strojan P, Serṡa G, ĊemaŻar M (2013a) Determination of vinblastine in tumour tissue with liquid chromatography–high resolution mass spectrometry. Talanta 116:887–893

    CAS  Article  Google Scholar 

  • Kosjek T, Perko S, żigon D, Heath E (2013b) Fluorouracil in the environment: analysis, occurrence, degradation and transformation. J Chromatogr A 1290:62–72

    CAS  Article  Google Scholar 

  • Kümmerer K, Al-Ahmad A, Bertram B, Wießler M (2000) Biodegradability of antineoplastic compounds in screening tests: influence of glucosidation and of stereochemistry. Chemosphere 40(7):767–773

    Article  Google Scholar 

  • Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42(Database issue):D1091–7. doi:10.1093/nar/gkt1068

    CAS  Article  Google Scholar 

  • Lenz K, Mahnik S, Weissenbacher N, Mader R, Krenn P, Hann S, Koellensperger G, Uhl M, Knasmuller S, Ferk F et al (2007) Monitoring, removal and risk assessment of cytostatic drugs in hospital wastewater. Water Sci Technol 56(12):141–149

    CAS  Article  Google Scholar 

  • Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338

    CAS  Article  Google Scholar 

  • Negreira N, López de Alda M, Barceló D (1280) On-line solid phase extraction–liquid chromatography–tandem mass spectrometry for the determination of 17 cytostatics and metabolites in waste, surface and ground water samples. J Chromatogr A:64–74

  • OECD (1992a) Test No. 203: Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris, France, doi:10.1787/9789264069961-en

  • OECD (1992b) Test No. 210: Fish, Early-Life Stage Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris, France, doi:10.1787/9789264070103-en

  • OECD (2006) Fish Embryo Toxicity (FET) Test, OECD Guideline for the Testing of Chemicals, Draft Proposal for a New Guideline. OECD Publishing, Paris

    Google Scholar 

  • Ou HC, Raible DW, Rubel EW (2007) Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hear Res 233(1):46–53

    CAS  Article  Google Scholar 

  • Parrella A, Lavorgna M, Criscuolo E, Russo C, Fiumano V, Isidori M (2014) Acute and chronic toxicity of six anticancer drugs on rotifers and crustaceans. Chemosphere

  • Pichler C, Filipiċ M, Kundi M, Rainer B, Knasmueller S, Miṡík M (2014) Assessment of genotoxicity and acute toxic effect of the imatinib mesylate in plant bioassays. Chemosphere 115:54–58

    CAS  Article  Google Scholar 

  • Pommier Y (2013) Drugging topoisomerases: lessons and challenges. ACS Chem Biol 8(1):82–95

    CAS  Article  Google Scholar 

  • Reddel RR, Kefford RF, Grant JM, Coates AS, Fox RM, Tattersall M (1982) Ototoxicity in patients receiving cisplatin: importance of dose and method of drug administration. Cancer Treat Rep 66(1):19–23

    CAS  Google Scholar 

  • Rosenberg B, Vancamp L (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386

    CAS  Article  Google Scholar 

  • Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment–applications beyond acute toxicity testing. Environ Sci Pollut Res 15(5):394–404

    CAS  Article  Google Scholar 

  • Straub JO (2010) Combined environmental risk assessment for 5-fluorouracil and capecitabine in Europe. Integr Environ Assess Manag 6(S1):540–566

    CAS  Google Scholar 

  • Yin J, Shao B, Zhang J, Li K (2010) A preliminary study on the occurrence of cytostatic drugs in hospital effluents in Beijing, China. Bull Environ Contam Toxicol 84(1):39–45

    CAS  Article  Google Scholar 

  • Zounková R, Odráṡka P, DoleŻalová L, Hilscherová K, Marṡálek B, Bláha L (2007) Ecotoxicity and genotoxicity assessment of cytostatic pharmaceuticals. Environ Toxicol Chem 26(10):2208–2214

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the project number 265264 CytoThreat of the 7 th Framework Programme of the European Union and the project 9878/2015/FEKUT of the Ministry of Human Resources of Hungary awarded to Szent István University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ákos Horváth.

Additional information

Responsible Editor: Thomas Braunbeck

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kovács, R., Bakos, K., Urbányi, B. et al. Acute and sub-chronic toxicity of four cytostatic drugs in zebrafish. Environ Sci Pollut Res 23, 14718–14729 (2016). https://doi.org/10.1007/s11356-015-5036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5036-z

Keywords

  • Zebrafish
  • Toxicity
  • Cytostatic drugs
  • Acute
  • Sub-chronic