Environmental Science and Pollution Research

, Volume 23, Issue 5, pp 4199–4206 | Cite as

Heterotrophic microflora of highly alkaline (pH > 13) brown mud disposal site drainage water near Ziar nad Hronom (Banska Bystrica region, Slovakia)

  • Zuzana Stramova
  • Matej Remenar
  • Peter Javorsky
  • Peter PristasEmail author
Research Article


Brown mud is a waste by-product of alumina production by Bayer process. Due to extensive sodium hydroxide use in the process, brown mud disposal site near Ziar nad Hronom (Banska Bystrica region, Slovakia) and drainage water are ones of the greatest environmental burdens in Slovakia. Drainage water from this landfills has pH value higher than 13, and it contains many heavy metals and elevated salt content. In our experiments, relatively numerous bacterial population was detected in the drainage water with frequency of about 80 cfu/ml using cultivation approach. The alkalitolerant heterotrophic isolates were identified by combination of MALDI-TOF and 16S rDNA analysis. Drainage water population was dominated by Actinobacteria (Microbacterium spp. and Micrococcus spp.) followed by low G + C-content gram-positive bacteria (Bacillus spp.). Two isolates belonged to gram-negative bacteria only, identified as Brevundimonas spp. Phylogenetic and biochemical analyses indicate that nearly half of the bacteria isolated are probably representatives of a new species. Brown mud disposal site is proposed as a source of new bacterial taxa possibly used in bioremediation processes.


Aluminum Brown mud Bacteria Alkalitolerance Halotolerance Heavy metals 



This publication is the result of the project no. 26220120001 implementation supported by the Research & Development Operational Programme funded by the ERDF.


  1. Aleem A, Isar J, Malik A (2003) Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizosphere soil. Bioresour Technol 86:7–13. doi: 10.1016/S0960-8524(02)00134-7 CrossRefGoogle Scholar
  2. Allcock ER, Woods DR (1981) Carboxymethyl cellulase and cellobiase production by clostridium acetobutylicum in an industrial fermentation medium. Appl Environ Microbiol 539–541. Doi: 0099-2240/81/020539-03$02.00/0Google Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  4. Bardossy G, Aleva GJJ (1990) Lateritic Bauxites. Developments in economic geology (Book 27). Elsevier Science. PublisherGoogle Scholar
  5. Beveridge TJ, Doyle RJ (1989) Metal ions and bacteria. Wiley, New York, p 339Google Scholar
  6. Burghardt F (1992) Mikrobiologische diagnostik. Thieme, StuttgartGoogle Scholar
  7. Chittpurna SPK, Verma D, Pinnaka AK, Mayilraj S, Korpole S (2011) Micrococcus lactis sp. nov., isolated from dairy industry waste. Int J Syst Evol Microbiol 61:2832–2836. doi: 10.1099/ijs.0.028043-0 CrossRefGoogle Scholar
  8. Dalmaso GZL, Ferreira D, Vermelho AB (2015) Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 13(4):1925–1965. doi: 10.3390/md13041925 CrossRefGoogle Scholar
  9. Fenselau C, Demirev PA (2001) Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev 20(4):157–171. doi: 10.1002/mas.10004 CrossRefGoogle Scholar
  10. Fujinami S, Fujisawa M (2010) Industrial applications of alkaliphiles and their enzymes—past, present and future. Environ Technol 31(8–9):845–856. doi: 10.1080/09593331003762807 CrossRefGoogle Scholar
  11. Gabani P, Singh OV (2013) Radiation-resistant extremophiles and their potential in biotechnology and therapeutics. Appl Microbiol Biotechnol 97:993–1004. doi: 10.1007/s00253-012-4642-7 CrossRefGoogle Scholar
  12. Gerhardt P, Murray RGE, Wood WA, Hodson RE, Whitman WB (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DCGoogle Scholar
  13. Hamdy MK, Williams FS (2001) Bacterial amelioration of bauxite residue waste of industrial alumina plants. J Ind Microbiol Biotechnol 27:228–233CrossRefGoogle Scholar
  14. Hetherington LE, Brown TJ, Benham AJ, Lusty PAJ, Idoine NE (2007) World mineral production: 2001–2005. British Geological SurveyGoogle Scholar
  15. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63(4):735–750Google Scholar
  16. Immanuel G, Dhanusha R, Prema P, Palavesam A (2006) Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int J Environ Sci Technol 3(1):25–34CrossRefGoogle Scholar
  17. Iverson WG, Millis NF (1974) A method for the detection of starch hydrolysis by bacteria. J Appl Bacteriol 37(3):443–446. doi: 10.1111/j.1365-2672.1974.tb00460.x CrossRefGoogle Scholar
  18. Jespersen S, Niessen WMA, Tjaden UR, van der Greef J, Litborn E, Lindberg U, Roeraade J, Hillenkamp F (1994) Attomole detection of proteins by matrix assisted laser desorption/ionization mass spectrometry with the use of picoliter vials. Rapid Commun Mass Spectrom 8:581–584. doi: 10.1002/rcm.1290080802 CrossRefGoogle Scholar
  19. Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200CrossRefGoogle Scholar
  20. Jones BV, Sun F, Marchesi JR (2007) Using skimmed milk agar to functionally screen a gut metagenomic library for proteases may lead to false positives. Lett Appl Microbiol 45:418–420. doi: 10.1111/j.1472-765X.2007.02202.x CrossRefGoogle Scholar
  21. Joshi AA, Kanekar PP, Kelkar AS, Shouche YS, Vani AA, Borgave SB, Sarnaik SS (2008) Cultivable bacterial diversity of alkaline Lonar Lake, India. Microb Ecol 55:163–172. doi: 10.1007/s00248-007-9264-8 CrossRefGoogle Scholar
  22. Kang SJ, Choi NS, Choi JH, Lee JS, Yoon JH, Song JJ (2009) Brevundimonas aejangsanensis sp. nov., a proteolytic bacterium isolated from soil, and reclassification of Mycoplana bullata into the genus Brevundimonas as Brevundimonas bullata comb. nov. Int J Syst Evol Microbiol 59(12):3155–3160. doi: 10.1099/ijs.0.011700-0 CrossRefGoogle Scholar
  23. Kopcakova A, Stramova Z, Kvasnova S, Godany A, Perhacova Z, Pristas P (2014) Need for database extension for reliable identification of bacteria from extreme environments using MALDI TOF mass spectrometry. Chem Pap 68(11):1435–1442. doi: 10.2478/s11696-014-0612-0 CrossRefGoogle Scholar
  24. Kothe E, Büchel G (2014) UMBRELLA: using microbes for the regulation of heavy metal mobility at ecosystem and landscape scale. Environ Sci Pollut Res 21:6761–6764. doi: 10.1007/s11356-014-2689-y CrossRefGoogle Scholar
  25. Laffineur K, Avesani V, Cornu G, Charlier J, Janssens M, Wauters G, Delmée M (2003) Bacteremia due to a novel Microbacterium species in a patient with leukemia and description of Microbacterium paraoxydans sp. nov. J Clin Microbiol 41:2242–2246. doi: 10.1128/JCM.41.5.2242-2246.2003 CrossRefGoogle Scholar
  26. Langella F, Grawunder A, Stark R, Weist A, Merten D, Haferburg G, Büchel G, Kothe E (2014) Microbially assisted phytoremediation approaches for two multi-element contaminated sites. Environ Sci Pollut Res 21:6845–6858. doi: 10.1007/s11356-013-2165-0 CrossRefGoogle Scholar
  27. Leroi F, Fall PA, Pilet MF, Chevalier F, Baron R (2012) Influence of temperature, pH and NaCl concentration on the maximal growth rate of Brochothrix thermosphacta and a bioprotective bacteria Lactococcus piscium CNCM I-4031. Food Microbiol 31(2):222–228. doi: 10.1016/ CrossRefGoogle Scholar
  28. Liu H, Du Z, Wang J, Yang R (2007) Universal sample preparation method for characterization of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 73(6):1899–1907. doi: 10.1128/AEM.02391-06 CrossRefGoogle Scholar
  29. Mourney A, Kilbertus G (1976) Simple media containing stabilised tributyrin for demonstrating lipolytic bacteria in food and soils. J Appl Bacteriol 40:47–51CrossRefGoogle Scholar
  30. Nakamura K, Kppamura K (1982) Isolation and identification of crystalline cellulose hydrolysing bacterium and its enzymatic properties. J Ferment Technol 60(4):343–348Google Scholar
  31. Navarro CA, von Bernath D, Jerez CA (2013) Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Biol Res 46:363–371. doi: 10.4067/S0716-97602013000400008 CrossRefGoogle Scholar
  32. Piotrowska-Seget Z, Cycoń M, Kozdrój J (2005) Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl Soil Ecol 28:237–246. doi: 10.1016/j.apsoil.2004.08.001 CrossRefGoogle Scholar
  33. Priest FG (1977) Extracellular enzyme synthesis in the genus bacillus. Bacteriol Rev 41(3):711–753Google Scholar
  34. Priest FG (1993) Systematics and ecology of Bacillus. In: Hoch JA, Losick R (eds) Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology and molecular genetics. ASM Press, Washington DCGoogle Scholar
  35. Rubinos DA, Barral MT (2013) Fractionation and mobility of metals in bauxite red mud. Environ Sci Pollut Res 20:7787–7802. doi: 10.1007/s11356-013-1477-4 CrossRefGoogle Scholar
  36. Ryu SH, Park M, Lee JR, Yun PY, Jeon CO (2007) Brevundimonas aveniformis sp. nov., a stalked species isolated from activated sludge. Int J Syst Evol Microbiol 57:1561–1565. doi: 10.1099/ijs.0.64737-0 CrossRefGoogle Scholar
  37. Schippers A, Bosecker K, Sproer C, Schumann P (2005) Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. Int J Syst Evol Microbiol 55:655–660. doi: 10.1099/ijs.0.63305-0 CrossRefGoogle Scholar
  38. Schwarz M, Lalík V, Vanek M (2011) Možnosti využitia odpadového kalu z výroby oxidu hlinitého. Chem List 105:114–121Google Scholar
  39. Silambarasan S, Abraham J (2014) Biosorption and characterization of metal tolerant bacteria isolated from Palar river basin Vellore. J Sci Res 6(1):125–131. doi: 10.3329/jsr.v6i1.14678 Google Scholar
  40. Šťastný P (2005) Projekt revitalizácie dedičstva starej výroby hliníka. Enviromagazín,
  41. Tindall BJ, Ross HNM, Grant WD (1984) Natronobacterium gen. nov., and Natronococcus gen. nov., to new genera of haloalkalophilic archaebacteria. Syst Appl Microbiol 5:41–57. doi: 10.1016/S0723-2020(84)80050-8 CrossRefGoogle Scholar
  42. Vary PS, Biedendieck R, Fuerch T, Meinhardt F, Rohde M, Deckwer W, Jahn D (2007) Bacillus megaterium—from simple soil bacterium to industrial protein production host. Appl Microbiol Biotechnol 76:957–967. doi: 10.1007/s00253-007-1089-3 CrossRefGoogle Scholar
  43. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703Google Scholar
  44. Wieser M, Denner EBM, Kämpfer P, Schumann P, Tindall B, Steiner U, Vybiral D, Lubitz W, Maszenan AM, Patel BKC, Seviour RJ, Radax C, Busse H (2002) Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). Int J Syst Evol Microbiol 52:629–637CrossRefGoogle Scholar
  45. Yoon JH, Kang SJ, Lee JS, Oh TK (2006) Brevundimonas terrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 56:2915–2919. doi: 10.1099/ijs.0.64253-0 CrossRefGoogle Scholar
  46. Young M, Artsatbanov V, Beller HR, Chandra G, Chater KF, Dover LG, Goh EB, Kahan T, Kaprelyants AS, Kyrpides N, Lapidus A, Lowry SR, Lykidis A, Mahillon J, Markowitz V, Mavromatis K, Mukamolova GV, Oren A, Rokem JS, Smith MC, Young DI, Greenblatt CL (2010) Genome sequence of the Fleming strain of Micrococcus luteus, a simple free-living actinobacterium. J Bacteriol 192(3):841–860. doi: 10.1128/JB.01254-09 CrossRefGoogle Scholar
  47. Zinniel LP, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208. doi: 10.1128/AEM.68.5.2198-2208.2002 CrossRefGoogle Scholar
  48. Zlamala C, Schumann P, Kämpfer P, Valens M, Rosselló-Mora R, Lubitz W, Busse HJ (2002) Microbacterium aerolatum sp. nov., isolated from the air in the ‘Virgilkapelle’ in Vienna. Int J Syst Bacteriol 52:1229–1234. doi: 10.1099/ijs.0.02013-0 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zuzana Stramova
    • 1
    • 2
  • Matej Remenar
    • 3
  • Peter Javorsky
    • 1
  • Peter Pristas
    • 1
    • 4
    Email author
  1. 1.Institute of Animal PhysiologySlovak Academy of SciencesKosiceSlovakia
  2. 2.Institute of Chemistry, Faculty of SciencePavol Josef Safarik UniversityKosiceSlovakia
  3. 3.Institute of Molecular BiologySlovak Academy of SciencesBratislavaSlovakia
  4. 4.Institute of Biology and Ecology, Faculty of SciencePavol Josef Safarik UniversityKosiceSlovakia

Personalised recommendations