Skip to main content
Log in

Hydrocarbon concentration and source appraisal in atmospheric particulate matter (PM2.5) of an urban tropical area

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Polycyclic aromatic (46 PAHs) and aliphatic hydrocarbons (C12−C40) were studied in atmospheric particulate matter sampled in Rio de Janeiro Metropolitan Area (RJMA). In total, 236 samples from six different sites were collected simultaneously and weekly over 1 year (January–December 2011) allowing a robust atmospheric characterization of fine particulate matter (PM2.5). Hydrocarbon concentration was in general low compared to previous studies in the area (PAHs range 0.25–19.3 ng m−3), possibly due to changes in fuel composition over time. Precipitation is the main meteorological parameter that rules particulate and hydrocarbon concentration, modifying PAH typology by scavenging. Aliphatic and aromatic diagnostic ratios gave indications conflicting with combustion features. However, ratios showed differences among sites. Principal component analysis (PCA) associated to multiple linear regressions (MLR) allowed quantitative estimate of sources and effectively indicated vehicular emission as the main hydrocarbon source in the atmospheric particulate matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ABNT (NBR 13412/95) Associaçãoo Brasileira de Normas Técnicas. Material particulado em suspensão na atmosfera - Determinação da concentração de partículas inaláveis pelo método do amostrador de grande volume acoplado a um separador inércia de partículas - Método de ensaio

  • Abrantes R, Vicente de Assunção J, Pesquero CR (2004) Emission of polycyclic aromatic hydrocarbons from light-duty diesel vehicles exhaust. Atmos Environ 38(11):1631–1640. doi:10.1016/j.atmosenv.2003.11.012

    Article  Google Scholar 

  • Abrantes R, Vicente de Assunção J, Pesquero CR, Bruns RE, Nóbrega RP (2009) Emission of polycyclic aromatic hydrocarbons from gasohol and ethanol vehicles. Atmos Environ 43(3):648–654

    Article  Google Scholar 

  • Akyüz M, Çabuk H (2008) Particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. Sci Total Envirom 405(1:3):62–70. doi:10.1016/j.scitotenv.2008.07.026

    Article  Google Scholar 

  • Allen A, da Rocha G, Cardoso A, Paterlini W, Machado C, de Andrade J (2008) Atmospheric particulate polycyclic aromatic hydrocarbons from road transport in southeast Brazil. Transp Res Part D: Transp Environ 13(8):483–490. doi:10.1016/j.trd.2008.09.004

    Article  Google Scholar 

  • Azevedo DA, Moreira LS, Siqueira DS (1999) Composition of extractable organic matter in aerosols from urban areas of Rio de Janeiro city, Brazil. Atmos Environ 33:4987–5001

    Article  Google Scholar 

  • Bi X, Sheng G, Peng P, Chen Y, Zhang Z, Fu J (2003) Distribution of particulate- and vapor-phase n-alkanes and polycyclic aromatic hydrocarbons in urban atmosphere of Guangzhou, China. Atmos Environ 37(2):289–298. doi:10.1016/S1352-2310(02)00832-4

    Article  CAS  Google Scholar 

  • CONAMA (1990) Conselho Nacional de Meio Ambiente. Resolução n°03 de 28 de julho de 1990. D.O.U. Sec¸˜ao I. 15973–15939

  • Dallarosa J, Teixeira EC, Meira L, Wiegand F (2008) Study of the chemical elements and polycyclic aromatic hydrocarbons in atmospheric particles of PM10 and PM2.5 in the urban and rural areas of South Brazil. Atmos Res 89(1:2):76–92. doi:10.1016/j.atmosres.2007.12.004

  • EPA (2007a) Environmental Protection Agency. Method 8015C. Nonhalogenated organics by gas chromatography. Revision 3. February 2007

  • EPA (2007b) Environmental Protection Agency. Method 8270D: Semivolatile organic compounds by gas chromatography/mass spectrometry (GC/MS). Revision 4. February 2007

  • Esen F, Tasdemir Y, Vardar N (2008) Atmospheric concentrations of PAHs, their possible sources and gas-to-particle partitioning at a residential site of Bursa, Turkey. Atmos Res 88(3:4):243–255. doi:10.1016/j.atmosres.2007.11.022

    Article  CAS  Google Scholar 

  • Fernandes MB, Brickus LSR, Moreira JC, Cardoso JN (2002) Atmospheric BTX and polyaromatic hydrocarbons in Rio de Janeiro, Brazil. Chemosphere 47:417–425

    Article  CAS  Google Scholar 

  • Godoy MLD, Godoy JM, Roldão LA, Soluri DS, Donagemma RA (2009) Coarse and fine aerosol source apportionment in Rio de Janeiro, Brazil. Atmos Environ 43(14):2366–2374. doi:10.1016/j.atmosenv.2008.12.046

    Article  CAS  Google Scholar 

  • Gogou A, Stratigakis N, Kanakidou M, Stephanou EG (1996) Organic aerosols in eastern Mediterranean: components source reconciliation by using molecular markers and atmospheric back trajectories. Org Geochem 25(12):79–96. doi:10.1016/S0146-6380(96)00105-2

    Article  CAS  Google Scholar 

  • Grimmer G, Jacob J, Naujack KW, Dettbarn G (1983) Determination of polycyclic aromatic compounds emitted from brown-coal-fired residential stoves by gas chromatography/mass spectrometry. Anal Chem 55(6):892–900. doi:10.1021/ac00257a018

    Article  CAS  Google Scholar 

  • Guo H, Lee S, Ho K, Wang X, Zou S (2003) Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos Environ 37(38):5307–5317. doi:10.1016/j.atmosenv.2003.09.011

    Article  CAS  Google Scholar 

  • Ho K, Ho SSH, Lee S, Cheng Y, Chow JC, Watson JG, Louie P, Tian L (2009) Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong. Atmos Environ 43(40):6343–6351. doi:10.1016/j.atmosenv.2009.09.025

    Article  CAS  Google Scholar 

  • INEA (2009) Instituto Estadual do Ambiente. Relatório Anual de Qualidade do Ar 2009. 108p

  • Kavouras IG, Koutrakis P, Tsapakis M, Lagoudaki E, Stephanou EG, Von Baer D, Oyola P (2001) Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environ Sci Technol 35(11):2288–2294. doi:10.1021/es001540z

    Article  CAS  Google Scholar 

  • Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel, and gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 29(4):533–542. doi:10.1016/1352-2310(94)00275-P

    Article  CAS  Google Scholar 

  • Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 37:1873–1881

    Article  CAS  Google Scholar 

  • Li B, Feng C, Li X, Chen Y, Niu J, Shen Z (2012) Spatial distribution and source apportionment of PAHs in surficial sediments of the Yangtze Estuary, China. Mar Pollut Bull 64(3):636–643. doi:10.1016/j.marpolbul.2011.12.005

    Article  CAS  Google Scholar 

  • Lima FM (2006) Hidrocarbonetos Policíclicos Aromáticos em Material Particulado Atmosférico na Regi˜ao Central de Niterói, rj. Master’s thesis, Instituto de Química - UFF, 95p

  • Lopes WA, Andrade JB (1996) Fontes, Formação, Reatividade e Quantificação de Hidrocarbonetos Policíclicos Aromáticos na Atmosfera. Quim Nov. 19(5):497–516

  • Manoli E, Kouras A, Samara C (2004) Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere 56(9):867–878. doi:10.1016/j.chemosphere.2004.03.013

    Article  CAS  Google Scholar 

  • Mazurek MA, Cass GR, Simoneit BRT (1989) Interpretation of high-resolution gas chromatography and high-resolution gas chromatography/mass spectrometry data acquired from atmospheric organic aerosol samples. Aerosol Sci Technol 10(2):408–420. doi:10.1080/02786828908959280

    Article  CAS  Google Scholar 

  • Nascimento KH (2006) Determinação de Compostos Orgânicos no Aerossol Atmosférico em Sítios da América do Sul. Master’s thesis, Instituto de Química. Universidade de São Paulo, 139p

  • Oliveira C, Martins N, Tavares J, Pio C, Cerqueira M, Matos M, Silva H, Oliveira C, Camões F (2011) Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemosphere 83(11):1588–1596. doi:10.1016/j.chemosphere.2011.01.011

    Article  CAS  Google Scholar 

  • Omar N, Abas M, Rahman N, Tahir N, Rushdi A, Simoneit B (2007) Levels and distributions of organic source tracers in air and roadside dust particles of Kuala Lumpur, Malaysia. Environ Geol 52(8):1485–1500

    Article  CAS  Google Scholar 

  • Oros D, Simoneit B (2000) Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel 79(5):515–536. doi:10.1016/S0016-2361(99)00153-2

    Article  CAS  Google Scholar 

  • Oros DR, bin Abas MR, Omar NYM, Rahman NA, Simoneit BR (2006) Identification and emission factors of molecular tracers in organic aerosols from biomass burning: part 3. Grasses. Appl Geochem 21(6):919–940. doi:10.1016/j.apgeochem.2006.01.008

    Article  CAS  Google Scholar 

  • Pandey P, Patel K, Lenicek J (1999) Polycyclic aromatic hydrocarbons: need for assessment of health risks in India? study of an urban-industrial location in India. Environ Monit Assess 59(3):287–319

    Article  CAS  Google Scholar 

  • Panther B, Hooper M, Tapper N (1999) A comparison of air particulate matter and associated polycyclic aromatic hydrocarbons in some tropical and temperate urban environments. Atmos Environ 33(24:25):4087–4099. doi:10.1016/S1352-2310(99)00150-8

    Article  CAS  Google Scholar 

  • Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36(17):2917–2924. doi:10.1016/S1352-2310(02)00206-6

    Article  CAS  Google Scholar 

  • Pereira-Netto AD, Barreto RP, Moreira JC, Arbila G (2001) Preliminary comparison of PAH in total suspended particulate samples taken at Niterói and Rio de Janeiro cities. Bull Environ Contam Toxicol 66:36–43

    Article  CAS  Google Scholar 

  • Pereira-Netto AD, Muniz FC, Laurentino ECPR (2002) Identification of polycyclic aromatic hydrocarbons in street dust of Niterói city, RJ, Brazil. Bull Environ Contam Toxicol 68:831–838

    Article  CAS  Google Scholar 

  • Pereira-Netto AD, Barreto RP, Moreira JC, Arbila G (2005) PAHs in diurnal and nocturnal samples of total suspended particulate in a highly trafficked area of Rio de Janeiro city, Brazil. Bull Environ Contam Toxicol 75:1004–1011

    Article  CAS  Google Scholar 

  • Quitério SL, Arbila G, Bauerfeldt GF, Moreira KC (2007) Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in airborne particles (PM10) collected in Rio de Janeiro, Brazil. Water Air Soil Pollut 179:79–92

    Article  Google Scholar 

  • Ravindra K, Sokhi R, Grieken RV (2008a) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42(13):2895–2921. doi:10.1016/j.atmosenv.2007.12.010

    Article  CAS  Google Scholar 

  • Ravindra K, Wauters E, Grieken RV (2008b) Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses. Sci Total Environ 396(2:3):100–110. doi:10.1016/j.scitotenv.2008.02.018

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993a) Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ Sci Technol 27(4):636–651. doi:10.1021/es00041a007

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993b) Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants. Environ Sci Technol 27(13):2700–2711. doi:10.1021/es00049a008

    Article  CAS  Google Scholar 

  • Sicre M, Marty J, Saliot A, Aparicio X, Grimalt J, Albaiges J (1967) Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmos Environ 21(10):2247–2259. doi:10.1016/0004-6981(87)90356-8

    Article  Google Scholar 

  • Simoneit BR (2002) Biomass burning—a review of organic tracers for smoke from incomplete combustion. Appl Geochem 17(3):129–162. doi:10.1016/S0883-2927(01)00061-0

    Article  CAS  Google Scholar 

  • Simoneit BR, Mazurek MA (1982) Organic matter of the troposphere—II. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atmos Environ 16(9):2139–2159

    Article  CAS  Google Scholar 

  • Simoneit BR, Crisp P, Mazurek M, Standley L (1991a) Composition of extractable organic matter of aerosols from the blue mountains and southeast coast of Australia. Environ Int 17(5):405–419. doi:10.1016/0160-4120(91)90274-T

    Article  CAS  Google Scholar 

  • Simoneit BR, Sheng G, Chen X, Fu J, Zhang J, Xu Y (1991b) Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmos Environ Part A Gen Top 25(10):2111–2129. doi:10.1016/0960-1686(91)90088-O

    Article  Google Scholar 

  • Sofowote UM, Mccarry BE, Marvin CH (2008) Source apportionment of PAH in Hamilton Harbour suspended sediments: comparison of two factor analysis methods. Environ Sci Technol 42:6007–6014

    Article  CAS  Google Scholar 

  • Souza CDR, Silva SD, Silva MAV, D’Agosto MA, Barbosa AP (2013) Inventory of conventional air pollutants emissions from road transportation for the state of Rio de Janeiro. Energ Policy 53:125–135

    Article  Google Scholar 

  • Tobiszewski M, Namiehnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119. doi:10.1016/j.envpol.2011.10.025

    Article  CAS  Google Scholar 

  • Vasconcellos PC, Artaxo PE, Ciccioli P, Ceninato A, Brancaleoni E, Frattoni M (1998) Chemical composition of aerosol collected in the Amazon forest. Quim Nov. 21(4):385–393

  • Vasconcellos PC, Souza DZ, Sanchez-Ccoyllo O, Bustillos JOV, Lee H, Santos FC, Nascimento KH, Araújo MP, Saarnio K, Teinilä K, Hillamo R (2010) Determination of anthropogenic and biogenic compounds on atmospheric aerosol collected in urban, biomass burning and forest areas in São Paulo, Brazil. Sci Total Environ 408(23):5836–5844. doi:10.1016/j.scitotenv.2010.08.012

    Article  CAS  Google Scholar 

  • Vasconcellos PC, Souza DZ, Avila SG, Araújo MP, Naoto E, Nascimento KH, Cavalcante FS, Santos MD, Smichowski P, Behrentz E (2011) Comparative study of the atmospheric chemical composition of three South American cities. Atmos Environ 45(32):5770–5777. doi:10.1016/j.atmosenv.2011.07.018

    Article  CAS  Google Scholar 

  • Westerholm R, Christensen A, Ake R (1996) Regulated and unregulated exhaust emissions from two three-way catalyst equipped gasoline fuelled vehicles. Atmos Environ 30(20):3529–3536. doi:10.1016/1352-2310(96)00048-9

    Article  CAS  Google Scholar 

  • Wise SA, Benner BA, Byrd GD, Chesler SN, Rebbert RE, Schantz MM (1988) Determination of polycyclic aromatic hydrocarbons in a coal tar standard reference material. Anal Chem 60:887–894

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33(4):489–515. doi:10.1016/S0146-6380(02)00002-5

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Snowdon LR, Fowler BR (2011) Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments. Org Geochem 42(9):1109–1146. doi:10.1016/j.orggeochem.2011.06.007

    CAS  Google Scholar 

  • Zeri M, Oliveira-Júnior JF, Lyra GB (2011) Spatiotemporal analysis of particulate matter, sulfur dioxide and carbon monoxide concentrations over the city of Rio de Janeiro, Brazil. Meteorog Atmos Phys 113(3–4):139–152

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Coordenaçãoo de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for the financial support. The authors are also grateful to Rio de Janeiro State Environmental Institute (INEA) for supplying samples and to INMET, Sistema Alerta Rio, and Infraero for providing the meteorological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Massone.

Additional information

Responsible editor: Constantini Samara

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 11 kb)

Fig. S1

N-Alkanes Box-Plot distribution, without outliers, in particulate matter (PM2.5) from Rio de Janeiro Metropolitan Area (EPS 2253 kb)

Fig. S2

PAHs Box-Plot distribution, without outliers, in particulate matter (PM2.5) from Rio de Janeiro Metropolitan Area (EPS 2237 kb)

Fig. S3

Other PAHs quantified in atmospheric particulate matter from Rio de Janeiro Metropolitan Area. Data without outliers (EPS 1418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massone, C.G., Wagener, A.L.R., Abreu, H.M. et al. Hydrocarbon concentration and source appraisal in atmospheric particulate matter (PM2.5) of an urban tropical area. Environ Sci Pollut Res 22, 14767–14780 (2015). https://doi.org/10.1007/s11356-015-4695-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4695-0

Keywords

Navigation