Ecophysiological and antioxidant traits of Salvia officinalis under ozone stress

Abstract

Ecophysiological and antioxidant traits were evaluated in sage (Salvia officinalis) plants exposed to 120 ppb of ozone for 90 consecutive days (5 h day−1). At the end of fumigation, plants showed slight leaf yellowing that could be considered the first visual symptom of leaf senescence. Ozone-stressed leaves showed (1) reduced photosynthetic activity (−70 % at the end of exposure), (2) chlorophyll loss (−59 and −56 % of chlorophyll a and b concentrations, starting from 30 days from the beginning of exposure), and (3) cellular water deficit (−12 % of the relative water content at the end of the fumigation). These phenomena are indicative of oxidative stress in the chloroplasts (as confirmed by the strong degradation of β-carotene) despite the photoprotection conferred by xanthophyll cycle [as demonstrated by the significant rise of de-epoxidation index, reaching the maximum value at the end of the treatment (+69 %)], antioxidant compounds [as confirmed by the increase of phenols (in particular caffeic acid and rosmarinic acid)], and water-soluble carbohydrates (especially monosaccharides). By means of combined ecophysiological and biochemical approaches, this study demonstrates that S. officinalis is able to activate an adaptive survival mechanism allowing the plant to complete its life cycle even under oxidative stressful conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

%D :

Fraction of absorbed light that was thermally dissipated in PSII antennae

Φ PSII :

Actual quantum yield of PSII

A :

Photosynthetic activity

ANOVA:

Analysis of variance

A + V:

Anteraxanthin + violaxanthin

CEO3 :

Cumulative exposure to O3

C i :

Intercellular CO2 concentration

Chl:

Chlorophyll

CUOs:

Cumulative O3 Uptakes

DEPS:

De-epoxidation index value

F 0 :

Minimal fluorescence

F0 :

Minimal fluorescence in the light-adapted state

FBE:

From the beginning of exposure

F m :

Maximal fluorescence

Fm :

Maximal fluorescence in the light-adapted state

F s :

Steady-state fluorescence yield in the light-adapted state

FW:

Fresh weight

G w :

Stomatal conductance to water vapor

LHC:

Light harvesting complex

O3 :

Ozone

PFD:

Photon flux density

PSI:

Photosystem I

PSII:

Photosystem II

qNP:

No photochemical quenching

qP:

Photochemical quenching

ROS:

Reactive oxygen species

RWC:

Relative water content

WUEi :

Intrinsic water use efficiency

References

  1. Ben Salem I, Fekih S, Sghaier H, Bousselmi M, Saidi M, Landoulsi A, Fattouch S (2013) Effect of ionizing radiation on polyphenolic content and antioxidant potential of parathion-treated sage (Salvia officinalis) leaves. Food Chem 141:1398–1405

    CAS  Article  Google Scholar 

  2. Ben Taârit M, Msaada K, Hosni K, Marzouk B (2012) Physiological changes, phenolic content and antioxidant activity of Salvia officinalis L. grown under saline conditions. J Sci Food Agric 92:1614–1619

    Article  Google Scholar 

  3. Bettaieb I, Zakhama N, Aidi Wannes W, Kchouk ME, Marzouk B (2009) Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci Hortic 120:271–275

    CAS  Article  Google Scholar 

  4. Biswal B (1995) Carotenoid catabolism during leaf senescence and its control by light. J Photochem Photobiol B 30:3–13

    CAS  Article  Google Scholar 

  5. Bolouri-Moghaddam M, Le Roy K, Xiang L, Rolland F, Van den Ende W (2010) Sugar signaling and antioxidant network connection in plant cell. FEBS 277:2022–2037

    CAS  Article  Google Scholar 

  6. Calatayud A, Barreno E (2004) Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiol Biochem 42:549–555

    CAS  Article  Google Scholar 

  7. Calatayud A, Iglesias DJ, Talòn M, Barreno E (2003) Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation. Plant Physiol Biochem 41:839–845

    CAS  Article  Google Scholar 

  8. Calatayud A, García-Breijo FJ, Cervero J, Reig-Armiñana J, Sanz MJ (2011) Physiological, anatomical and biomass partitioning responses to ozone in the Mediterranean endemic plant Lamottea dianae. Ecotoxicol Environ Saf 75:1131–1138

    Article  Google Scholar 

  9. Corell M, Garcia MC, Contreras JI, Segura ML, Cermeño A (2012) Effect of water stress on Salvia officinalis L. bioproductivity and its bioelement concentrations. Commun Soil Sci Plan 43:419–425

    CAS  Article  Google Scholar 

  10. Dawnay L, Mills G (2009) Relative effects of elevated background ozone concentrations and peak episodes on senescence and above-ground growth in four populations of Anthoxanthum odoratum L. Environ Pollut 157:503–510

    CAS  Article  Google Scholar 

  11. Döring AS, Pellegrini E, Campanella A, Trivellini A, Gennai C, Petersen M, Nali C, Lorenzini G (2014) How sensitive is Melissa officinalis to realistic ozone concentrations? Plant Physiol Biochem 74:156–164

    Article  Google Scholar 

  12. EEA (2014) Air pollution by ozone across Europe during summer 2013. Overview of exceedances of EC ozone threshold values: April–September 2013. Technical report 3/2014. European Environment Agency, Copenhagen

    Google Scholar 

  13. Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011

    CAS  Article  Google Scholar 

  14. Francini A, Nali C, Picchi V, Lorenzini G (2007) Metabolic changes in white clover clones exposed to ozone. Environ Exp Bot 60:11–19

    CAS  Article  Google Scholar 

  15. Frei M, Kohno Y, Wissuwa M, Makkar HPS, Becker K (2011) Negative effects of tropospheric ozone on the feed value of rice straw are mitigated by an ozone tolerance QTL. Glob Chang Biol 17:2319–2329

    Article  Google Scholar 

  16. Guidi L, Nali C, Lorenzini G, Filippi F, Soldatini GF (2001) Effect of chronic ozone fumigation on the photosynthetic process of poplar clones showing different sensitivity. Environ Pollut 113:245–254

    CAS  Article  Google Scholar 

  17. James RA, Rivelli AR, Munns R, von Caemmerer S (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29:1393–1403

    CAS  Article  Google Scholar 

  18. Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence systems induced by ozone. Plant Cell Environ 17:783–794

    Article  Google Scholar 

  19. Keutgen AJ, Noga G, Pawelzik E (2005) Cultivar-specific impairment of strawberry growth, photosynthesis, carbohydrate and nitrogen accumulation by ozone. Environ Exp Bot 53:271–280

    CAS  Article  Google Scholar 

  20. Köllner B, Krause GHM (2000) Changes in carbohydrates, leaf pigments and yield in potatoes induced by different ozone exposure regimes. Agric Ecosyst Environ 78:149–158

    Article  Google Scholar 

  21. Kyparissis A, Petropoulou Y, Manetas Y (1995) Summer survival of leaves in a soft-leaved shrub (Phlomis fructicosa L., Labiatae) under Mediterranean filed conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J Exp Bot 46:1825–1831

    CAS  Article  Google Scholar 

  22. Lichtenthaler HK, Ač A, Marek MV, Kalina J, Urban O (2007) Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol Biochem 45:577–588

    CAS  Article  Google Scholar 

  23. Liu YH, Offler CE, Ruan YL (2013) Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Front Plant Sci 4:1–12

    Google Scholar 

  24. Logan BA, Demmig-Adams B, Adams WW III, Grace SC (1998) Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. acclimated to four growth PPFDs in the field. J Exp Bot 49:1869–1879

    CAS  Article  Google Scholar 

  25. Lombardozzi D, Sparks JP, Bonan G, Levis S (2012) Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model. Oecologia 169:651–659

    Article  Google Scholar 

  26. Lombardozzi D, Sparks JP, Bonan G (2013) Integrating O3 influences on terrestrial processes: photosynthetic and stomatal response data available for regional and global modelling. Biogeosci Discuss 10:6973–7012

    Article  Google Scholar 

  27. Lorenzini G, Pellegrini E, Campanella A, Nali C (2014) It’s not just the heat and the drought: the role of ozone air pollution in the 2012 heat wave. Agrochimica 58:40–52

    Google Scholar 

  28. Lu F, Foo LY (2002) Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem 75:197–202

  29. Mikkelsen TN, Dodell B, Lütz C (1995) Changes in pigment concentration and composition in Norway spruce induced by long-term exposure to low levels of ozone. Environ Pollut 87:197–205

    CAS  Article  Google Scholar 

  30. Mills G, Wagg S, Harmens H (2013) Ozone pollution: impacts on ecosystem services and biodiversity. ICP Vegetation Programme Coordination Centre. Centre for Ecology and Hydrology, Bangor

    Google Scholar 

  31. Morsy MR, Jouve L, Hausman J-F, Hoffman L, Stewart JMD (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol 164:157–167

    CAS  Article  Google Scholar 

  32. Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31:203–216

    Article  Google Scholar 

  33. Munné-Bosch S, Müller M, Schwarz K, Alegre L (2001) Diterpenes and antioxidative protection in drought stressed Salvia officinalis plants. J Plant Physiol 158:1431–1437

    Article  Google Scholar 

  34. Nali C, Paoletti E, Marabottini R, Della Rocca G, Lorenzini G, Paolacci AR, Ciaffi M, Badiani M (2004) Ecophysiological and biochemical strategies of response to ozone in Mediterranean evergreen broadleaf species. Atmos Environ 38:2247–2257

    CAS  Article  Google Scholar 

  35. Nali C, Pucciariello C, Mills G, Lorenzini G (2005) On the different sensitivity of white clover clones to ozone: physiological and biochemical parameters in a multivariate approach. Water Air Soil Pollut 164:137–153

    CAS  Article  Google Scholar 

  36. Pellegrini E (2014) PSII photochemistry is the primary target of oxidative stress imposed by ozone in Tilia americana. Urban For Urban Green 13:94–102

    Article  Google Scholar 

  37. Pellegrini E, Lorenzini G, Nali C (2007) The 2003 European heat wave: which role for ozone? Some data from Tuscany, Central Italy. Water Air Soil Pollut 181:401–408

    CAS  Article  Google Scholar 

  38. Pellegrini E, Francini A, Lorenzini G, Nali C (2011) PSII photochemistry and carboxylation efficiency in Liriodendron tulipifera under ozone exposure. Environ Exp Bot 70:217–226

    CAS  Article  Google Scholar 

  39. Peñarrubia L, Moreno J (1999) Molecular mechanisms of plant responses to elevated levels of tropospheric ozone. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 769–793

    Chapter  Google Scholar 

  40. Petersen M, Simmonds MSJ (2003) Molecules of interest: rosmarinic acid. Phytochemistry 62:121–125

    CAS  Article  Google Scholar 

  41. Płażek A, Rapacz M, Skoczowski A (2000) Effects of ozone fumigation on photosynthesis and membrane permeability in leaves of spring barley, meadow fescue and winter rape. Photosynthetica 38:409–413

    Google Scholar 

  42. Qiu N, Lu Q, Lu C (2003) Photosynthesis, photosystem II efficiency and the xanthophylls cycle in the salt-adapted halophyte Atriplex centralsiatica. New Phytol 159:479–486

    CAS  Article  Google Scholar 

  43. Ranieri A, Giuntini D, Ferraro F, Nali C, Baldan B, Lorenzini G, Soldatini GF (2001) Chronic ozone fumigation induces alterations in thylakoid functionality and composition in two poplar clones. Plant Physiol Biochem 39:999–1008

    CAS  Article  Google Scholar 

  44. Rohacek K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13–29

    CAS  Article  Google Scholar 

  45. Saitanis CJ, Bari SM, Burkey KO, Stamatelopoulos D, Agathokleous E (2014) Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone. Environ Sci Pollut Res 21:13560–13571

    CAS  Article  Google Scholar 

  46. Saviranta NMM, Julkunen-Tiitto R, Oksanen E, Karjalainen RO (2011) Leaf phenolic compounds in red clover (Trifolium pratense L.) induced by exposure to moderately elevated ozone. Environ Pollut 158:440–446

    Article  Google Scholar 

  47. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical quenching with a new type of modulation fluorimeter. Photosynth Res 10:51–62

    CAS  Article  Google Scholar 

  48. Severino JF, Stich K, Soja G (2007) Ozone stress and antioxidant substances in Trifolium repens and Centaurea jacea leaves. Environ Pollut 146:707–714

    CAS  Article  Google Scholar 

  49. Sgarbi E, Baroni Fornasiero R, Paulino Lins A, Meneghini Bonatti P (2003) Phenol metabolism differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf. Plant Sci 165:951–957

    CAS  Article  Google Scholar 

  50. Sicard P, De Marco A, Troussier F, Renou C, Vas N, Paoletti E (2013) Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmos Environ 79:705–715

    CAS  Article  Google Scholar 

  51. Tepe B (2008) Antioxidant potentials and rosmarinic acid levels of the methanolic extracts of Salvia virgata (Jacq.), Salvia staminea (Montbret & Aucher ex Bentham) and Salvia verbenaca (L.) from Turkey. Bioresour Technol 99:1584–1588

    CAS  Article  Google Scholar 

  52. Tonelli M, Pellegrini E, D’Angiolillo F, Petersen M, Nali C, Pistelli L, Lorenzini G (2015) Ozone-elicited secondary metabolites in shoot cultures of Melissa officinalis L. Plant Cell Tissue Org Cult. 120:617–629

  53. Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157

    CAS  Article  Google Scholar 

  54. Volkova L, Bennett LT, Tausz M (2011) Diurnal and seasonal variations in photosynthetic and morphological traits of the tree ferns Dicksonia antarctica (Dicksoniaceae) and Cyathea australis (Cyatheaceae) in wet sclerophyll forests of Australia. Environ Exp Bot 70:11–19

    Article  Google Scholar 

  55. von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  56. Wingler A, Purdy S, MacLean JA, Pourtau N (2006) The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot 57:391–399

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cristina Nali.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pellegrini, E., Francini, A., Lorenzini, G. et al. Ecophysiological and antioxidant traits of Salvia officinalis under ozone stress. Environ Sci Pollut Res 22, 13083–13093 (2015). https://doi.org/10.1007/s11356-015-4569-5

Download citation

Keywords

  • Carbohydrates
  • Carotenoids
  • Medicinal plants
  • Oxidative stress
  • Phenolic acids
  • Xanthophyll cycle